精英家教網 > 初中數學 > 題目詳情
已知點A、B在數軸上對應的數分別用a、b表示,且(ba-81)2+|a-2|=0
(1)求a、b的值,并在數軸上標出點B的位置;
(2)數軸上另有點P與點C,點C對應的自然數m恰好等于它前面兩個連續(xù)自然數的和,點P滿足PB=2PC,求點C、點P在數軸上分別對應的數.
分析:(1)先根據非負數的性質得出(ba-81)2=0且|α-2|=0,解方程即可求出a、b的值,并在數軸上標出點B的位置;
(2)先根據自然數m恰好等于它前面兩個連續(xù)自然數的和,列出方程(m-1)+(m-2)=m,求出m=3,則BC=6或12.設PC=x,則PB=2x.分兩種情況:Ⅰ、BC=6,又分為兩種情況:①點P在BC之間;②點P在點C左邊;這兩種情況都根據BC=6列方程;Ⅱ、BC=12,又分為兩種情況:①點P在BC之間;②點P在點C右邊,這兩種情況都根據BC=12列方程.
解答:解:(1)∵(ba-81)2+|α-2|=0,
又(ba-81)2≥0,|α-2|≥0,
∴(ba-81)2=0且|α-2|=0,
∴ba-81=0,a=2,
即ba=81,
∴b=9或-9.
在數軸上標出點B如下圖所示;


(2)由題意,得(m-1)+(m-2)=m,
解得m=3.
則BC=6或12.
設PC=x,則PB=2x.
Ⅰ、當BC=6時,①點P在BC之間,x+2x=6,解得x=2.
則點P對應的數為5;
②點P在點C左邊時,2x-x=6,解得x=6.
則點P對應的數為-3;
Ⅱ、當BC=12時,①點P在BC之間,x+2x=12,解得x=4.
則點P對應的數為-1;
②點P在點C右邊時,2x-x=12,解得x=12.
則點P對應的數為15.
故點C對應的數m為3.當BC=6時,點P對應的數有5或-3;當BC=12時,點P對應的數有-1或15.
點評:本題考查了非負數的性質,數軸,同一數軸上兩點之間的距離公式,本題有一定難度,正確分類是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

13、已知點A,B在數軸上,點A表示的數為2,點B表示的數為-1,則A,B兩點間的距離為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

30、探索性問題:
已知點A、B在數軸上分別表示m、n.
(1)填寫下表:
m 5 -5 -6 -6 -10
n 3 0 4 -4 2
A、B兩點的距離 2
(2)若A、B兩點的距離為d,則d與m、n有何數量關系;
(3)在數軸上標出所有符合條件的整數點P,使它到3和-3的距離之和為6,并求出所有這些整數的和;
(4)若點C表示的數為x,當C在什么位置時,|x+2|+|x-3|取得值最?

查看答案和解析>>

科目:初中數學 來源: 題型:

已知點A、B在數軸上分別表示有理數a、b,A、B兩點之間的距離表示為|AB|,當A、B兩點中有一點在原點時,不妨設點A在原點,如圖1,|AB|=|OB|=|b|=|a-b|,當A、B兩點都不在原點時
①如圖2,點A、B都在原點的右邊|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如圖3,點A、B都在原點的左邊,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=a-b=|a-b|;
③如圖4,點A、B在原點的兩邊,|AB|=|OB|+|OA|=|a|+|b|=a+(-b)=a-b=|a-b|;
綜上,數軸上A、B兩點之間的距離|AB|=|a-b|
利用上述結論,請結合數軸解答下列問題:
(1)數軸上表示2和-5的兩點之間的距離是
7
7
,數軸上表示-1和-3的兩點之間的距離是
2
2

(2)若數軸上有理數x滿足|x-1|+|x+2|=5,則有理數x為
2或-3
2或-3

(2)數軸上表示a和-1的點的距離可表示為|a+1|,表示a和3的點距離表示為|a-3|,當|a+1|+|a-3|取最小值時,有理數a的范圍是
-1≤a≤3
-1≤a≤3
,最小值是
4
4

查看答案和解析>>

科目:初中數學 來源: 題型:

已知點A、B在數軸上分別表示數a、b.
(1)觀察數軸并填寫下表:
a 5 4 -2 -3 2
b 3 0 -1 0 -4
A、B兩點間的距離
2
2
4
4
1
1
3
3
6
6
(2)若設A、B兩點間的距離為c,則c可表示為
D
D

A.a+b    B.a-b    C.|a+b|D.|a-b|
(3)求|x-2|=2中x的值.

查看答案和解析>>

同步練習冊答案