已知△ABC≌△BAD,AB=7,BC=12,AC=9,則BD的長是(  )
分析:根據(jù)全等三角形的性質(zhì)推出BD=AC,代入求出即可.
解答:解:
∵△ABC≌△BAD,AB=7,BC=12,AC=9,
∴AC=BD=9,
故選B.
點評:本題考查了全等三角形的性質(zhì)的應(yīng)用,注意:全等三角形的對應(yīng)邊相等,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,∠BAC=90°,點D,E在BC邊上,且BA=BE,CA=CD,作△ADE的外接圓⊙O并連接OA、OD、OE.
(1)求證:BO平分∠ABC;
(2)求證:∠DAO=90°-∠AED;
(3)求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,BC=6,AC>AB,點D為AC邊上一點,且DC=AB=4,E為BC邊的中點,連接DE,設(shè)AD=x.
(1)當(dāng)DE⊥BC時(如圖1),連接BD,則BD的長為
 

(2)設(shè)
S四邊形ABEDS△CDE
=y
,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)取AD的中點M,連接EM并延長交BA的延長線于點P,以A為圓心AM為半徑作⊙A,試問:當(dāng)AD的長改變時,點P與⊙A的位置關(guān)系變化嗎?若不變化,請說明具體的位置關(guān)系,并證明你的結(jié)論;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,∠BAC=36°,AB=AC=2,動點D在CB的延長線上運動,動點E在BC的精英家教網(wǎng)延長線上運動,且保持∠DAE的值為108°.設(shè)DB=x,CE=y.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)用描點法畫出(1)中函數(shù)的圖象;
(3)已知直線y=x-3與(1)中函數(shù)圖象的交點坐標(biāo)是(a,b),求
a
b
+
b
a
的值;
(4)求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,BE平分∠ABC交AC于E,若∠A=90°,那么BC、BA、AE三者之間有何關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,∠B=60°,AB=AC=4,過BC上一點D作PD⊥BC,交BA的延長線于點P,交AC于點Q,若CD=1,則PA=
2
2

查看答案和解析>>

同步練習(xí)冊答案