精英家教網 > 初中數學 > 題目詳情

如圖,在直角坐標系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關于原點O的對稱點A2、B2(應保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2;
(3)設線段AB兩端點的坐標分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最?若存在,求出點C的坐標(不必說明周長之和最小的理由);若不存在,請說明理由.

解:(1)如圖,A2、B2為所求的點.

(2)設A(x1,y1)、B(x2,y2
依題意與(1)可得A1(-x1,y1),B1(-x2,y2),A2(-x1,-y1),B2(-x2,-y2
∴A1、B1關于x軸的對稱點是A2、B2,
∴x軸垂直平分線段A1A2、B1B2

(3)存在符合題意的C點.
由(2)知A1與A2,B1與B2均關于x軸對稱,
∴連接A2B1交x軸于C,點C為所求的點.
∵A(-2,4),B(-4,2)依題意及(1)得:
B1(4,2),A2(2,-4).
設直線A2B1的解析式為y=kx+b則有
解得
∴直線A2B1的解析式為y=3x-10,
令y=0,得x=,
∴C的坐標為(,0)
綜上所述,點C(,0)能使△A1B1C與△A2B2C的周長之和最。
分析:(1)根據中心對稱的方法,找點A2,B2,連接即可.
(2)設A(x1,y1)、B(x2,y2)依題意與(1)可得A1(-x1,y1),B1(-x2,y2),A2(-x1,-y1),B2(-x2,-y2),得到A1、B1關于x軸的對稱點是A2、B2,所以x軸垂直平分線段A1A2、B1B2
(3)根據A1與A2,B1與B2均關于x軸對稱,連接A2B1交x軸于C,點C為所求的點.根據題意得B1(4,2),A2(2,-4)
設直線A2B1的解析式為y=kx+b則利用待定系數法.解得,所以可求直線A2B1的解析式為y=3x-10.令y=0,得x=,所以C的坐標為(,0).即點C(,0)能使△A1B1C與△A2B2C的周長之和最。
點評:主要考查了軸對稱的作圖和性質,以及垂直平分線的性質.要知道對稱軸垂直平分對應點的連線.會根據此性質求得對應點利用待定系數法解一次函數的解析式是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數y=
6
x
的圖象經過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經過點A的一次函數圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數的解析式.
(3)點D在反比例函數y=
6
x
的圖象上,且點D在直線AC的右側,作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習冊答案