(2012•東莞)如圖,拋物線y=
1
2
x2-
3
2
x-9與x軸交于A、B兩點,與y軸交于點C,連接BC、AC.
(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運動(點E與點A、B不重合),過點E作直線l平行BC,交AC于點D.設AE的長為m,△ADE的面積為s,求s關于m的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結果保留π).
分析:(1)已知拋物線的解析式,當x=0,可確定C點坐標;當y=0時,可確定A、B點的坐標,進而確定AB、OC的長.
(2)直線l∥BC,可得出△AED、△ABC相似,它們的面積比等于相似比的平方,由此得到關于s、m的函數(shù)關系式;根據(jù)題干條件:點E與點A、B不重合,可確定m的取值范圍.
(3)①首先用m列出△AEC的面積表達式,△AEC、△AED的面積差即為△CDE的面積,由此可得關于S△CDE、m的函數(shù)關系式,根據(jù)函數(shù)的性質可得到S△CDE的最大面積以及此時m的值;
②過E做BC的垂線EM,這個垂線段的長即為與BC相切的⊙E的半徑,可根據(jù)相似三角形△BEF、△BCO得到的相關比例線段求得該半徑的值,由此得解.
解答:解:(1)已知:拋物線y=
1
2
x2-
3
2
x-9;
當x=0時,y=-9,則:C(0,-9);
當y=0時,
1
2
x2-
3
2
x-9=0,得:x1=-3,x2=6,則:A(-3,0)、B(6,0);
∴AB=9,OC=9.

(2)∵ED∥BC,
∴△AED∽△ABC,
S△AED
S△ABC
=(
AE
AB
2,即:
s
1
2
×9×9
=(
m
9
2,得:s=
1
2
m2(0<m<9).

(3)解法一:∵S△ACE=
1
2
AE•OC=
1
2
m×9=
9
2
m,
∴S△CDE=S△ACE-S△ADE=
9
2
m-
1
2
m2=-
1
2
(m-
9
2
2+
81
8

∵0<m<9,
∴當m=
9
2
時,S△CDE取得最大值,最大值為
81
8
.此時,BE=AB-AE=9-
9
2
=
9
2

記⊙E與BC相切于點M,連接EM,則EM⊥BC,設⊙E的半徑為r.
在Rt△BOC中,BC=
CO2+BO2
=
117
=3
13

∵∠OBC=∠MBE,∠COB=∠EMB=90°.
∴△BOC∽△BME,
ME
OC
=
EB
CB
,
r
9
=
9
2
117

∴r=
81
2
117
=
27
13
26

∴所求⊙E的面積為:π(
81
2
117
2=
729
52
π.
解法二:∵S△AEC=
1
2
AE•OC=
1
2
m×9=
9
2
m,
∴S△CDE=S△AEC-S△ADE=
9
2
m-
1
2
m2=-
1
2
(m-
9
2
2+
81
8

∵0<m<9,
∴當m=
9
2
時,S△CDE取得最大值,最大值為
81
8
.此時,BE=AB-AE=9-
9
2
=
9
2

∴S△EBC=
1
2
S△ABC=
81
4

如圖2,記⊙E與BC相切于點M,連接EM,則EM⊥BC,設⊙E的半徑為r.
在Rt△BOC中,BC=
92+62
=
117

∵S△EBC=
1
2
BC•EM,
1
2
×
117
r=
81
4
,
∴r=
81
2
117
=
27
13
26

∴所求⊙E的面積為:π(
81
2
117
2=
729
52
π.
點評:該題主要考查了二次函數(shù)的性質、相似三角形的性質、圖形面積的求法等綜合知識.在解題時,要多留意圖形之間的關系,有些時候將所求問題進行時候轉化可以大大的降低解題的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,小山崗的斜坡AC的坡度是tanα=
34
,在與山腳C距離200米的D處,測得山頂A的仰角為26.6°,求小山崗的高AB(結果取整數(shù):參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,直線y=2x-6與反比例函數(shù)y=
kx
(x>0)
的圖象交于點A(4,2),與x軸交于點B.
(1)求k的值及點B的坐標;
(2)在x軸上是否存在點C,使得AC=AB?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是
3-
1
3
π
3-
1
3
π
(結果保留π).

查看答案和解析>>

同步練習冊答案