已知△ABC中,∠BAC=90°,AB=AC.如圖,D為AC上任一點,連接BD,過A點作BD的垂線交過C點與AB平行的直線CE于點E.
求證:BD=AE.
分析:根據(jù)平行線性質(zhì)求出∠ACE=∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ABD=∠CAE,根據(jù)ASA證出△ADB≌△CAE即可.
解答:證明:∵AB∥EC,∠BAC=90°,
∴∠ACE=90°=∠BAD,
∵AF⊥BD,
∴∠AFB=90°=∠BAD,
∴∠ABD+∠BAF=90°,∠BAF+∠DAF=90°,
∴∠BAD=∠CAE,
在△ADB和△CAE中,
∠ABD=∠CAE
AB=AC
∠BAD=∠ACE
,
∴△ADB≌△CAE(ASA),
∴BD=AE.
點評:本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,垂直定義等知識點,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)邊相等,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點,且點P不與點A、B重合,點Q不與點B、C重合.
(1)在以下五個結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點的三角形全等于△PQB;④以A、P、C為頂點的三角形全等于△CPQ;⑤以A、P、C為頂點的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號填入題中的模線上).
(2)設(shè)AC=BC=1,當(dāng)CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=( 。

查看答案和解析>>

同步練習(xí)冊答案