已知四邊形ABCD中,E、F分別是AB、AD邊上的點(diǎn),DE與CF交于點(diǎn)G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論;
(3)如圖③,若BA=BC=2,DA=DC=,∠BAD=90°,DE⊥CF,試求的值.
(1)證明見解析;(2)當(dāng)∠B+∠EGC=180°時(shí),成立;理由見解析;(3).
【解析】(1)∵四邊形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴.
(2)當(dāng)∠B+∠EGC=180°時(shí),成立.
在AD的延長(zhǎng)線上取點(diǎn)M,使CM=CF,則∠CMF=∠CFM.
∵AB∥CD,∴∠A=∠CDM,∵∠B+∠EGC=180°,∴∠AED=∠FCB,∴∠CMF=∠AED.
∴△ADE∽△DCM,∴,即.
(3)過點(diǎn)C作CH⊥AD于H,可證△ADE∽△HCF,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期三個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)查了 名同學(xué),其中C類女生有 名, D類男生有 名;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
△ABC的周長(zhǎng)為30 cm,把△ABC的邊AC對(duì)折,使頂點(diǎn)C和點(diǎn)A重合,折痕交BC邊于點(diǎn)D,交AC邊于點(diǎn)E,連接AD,若AE=4 cm,則△ABD的周長(zhǎng)是
A.22 cm B.20 cm C.18 cm D.15 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在Rt△ABC中,∠C=90°,,把這個(gè)直角三角形繞頂點(diǎn)C旋轉(zhuǎn)后得到Rt△A'B'C,其中點(diǎn)B' 正好落在AB上,A'B'與AC相交于點(diǎn)D,那么 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,在△ABC中,∠BAC=90°,∠ABC=45°,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).以AD為邊做正方形ADEF,連接CF
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí).求證CF+CD=BC;
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)直接寫出CF,BC,CD三條線段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上時(shí),且點(diǎn)A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;
①請(qǐng)直接寫出CF,BC,CD三條線段之間的關(guān)系;
②若正方形ADEF的邊長(zhǎng)為2,對(duì)角線AE,DF相交于點(diǎn)O,連接OC 求OC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于x的方程有實(shí)數(shù)根,則的取值范圍是【 】
A. >–5 B. ≥–5且≠–1 C. >–5且≠–1 D. ≥–5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF =DE =5 , FB =,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DC-CB以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng)到點(diǎn)B停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒,y = S△EPF,則y與t的函數(shù)關(guān)系式為 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com