【題目】某次列車平均提速,用相同的時間,列車提速前行駛,提速后比提速前多行駛,提速前列車的平均速度為多少?若設(shè)提速前這次列車的平均速度為,則根據(jù)行駛時間的等量關(guān)系可以列出的方程為(

A. B. C. D.

【答案】A

【解析】

首先根據(jù)題意找到等量關(guān)系,時間=路程÷速度,用列車提速前行駛的路程除以提速前的速度,求出列車提速前行駛skm用的時間是多少;然后用列車提速后行駛的路程除以提速后的速度,求出列車提速后行駛s+50km用的時間是多少;最后根據(jù)列車提速前行駛skm和列車提速后行駛s+50km時間相同,列出方程即可.

解:列車提速前行駛skm用的時間是小時,
列車提速后行駛s+50km用的時間是小時,
因為列車提速前行駛skm和列車提速后行駛s+50km時間相同,
所以列方程是


故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象如圖所示,則二次函數(shù)y=﹣kx2﹣2x+ 的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師利用休息時間組織學(xué)生測量山坡上一棵大樹CD的高度,如圖,山坡與水平面成30°角(即∠MAN=30°),在山坡底部A處測得大樹頂端點C的仰角為45°,沿坡面前進20米,到達B處,又測得樹頂端點C的仰角為60°(圖中各點均在同一平面內(nèi)),求這棵大樹CD的高度(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園有一個拋物線形狀的觀景拱橋ABC,其橫截面如圖所示,在圖中建立的直角坐標(biāo)系中,拋物線的解析式為y=﹣ +c且過頂點C(0,5)(長度單位:m)

(1)直接寫出c的值;
(2)現(xiàn)因搞慶典活動,計劃沿拱橋的臺階表面鋪設(shè)一條寬度為1.5m的地毯,地毯的價格為20元/m2 , 求購買地毯需多少元?
(3)在拱橋加固維修時,搭建的“腳手架”為矩形EFGH(H、G分別在拋物線的左右側(cè)上),并鋪設(shè)斜面EG.已知矩形EFGH的周長為27.5m,求斜面EG的傾斜角∠GEF的度數(shù).(精確到0.1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,E、F分別為BC、CD的中點,AE與BF相交于點G.

(1)如圖1,求證:AE⊥BF;

(2)如圖2,將△BCF沿BF折疊,得到△BPF,延長FP交BA的延長線于點Q,若AB=4,求QF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半.這樣的圖形有( )

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊.數(shù)學(xué)家已發(fā)現(xiàn)在一個直角三角形中,兩條直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是,斜邊長度是,那么可以用數(shù)學(xué)語言表達為:.

1)在圖中,若,,則等于多少;

2)觀察圖,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個相同的直角三角形邊、在一條直線上;

3)如圖③所示,折疊長方形的一邊,使點落在邊的點處,已知,,利用上面的結(jié)論求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點 O是△ABC外接圓的圓心,若⊙O的半徑為5,∠A=45°,則 的長是( )

A. π
B. π
C. π
D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于正整數(shù)m,若m=pqpq0,且pq為整數(shù)),當(dāng)p-q最小時,則稱pqm的“最佳分解”,并規(guī)定fm=(如:12的分解有12×1,6×2,4×3,其中,4×312的最佳分解,則f12=).關(guān)于fm)有下列判斷:①f27=3;②f13=;③f2018=;④f2=f32).其中,正確判斷的序號是______

查看答案和解析>>

同步練習(xí)冊答案