如圖所示,菱形ABCD的頂點(diǎn)A、B在x軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在y軸的正半軸上,∠BAD=60°,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求線(xiàn)段AD所在直線(xiàn)的函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按照A?D?C?B?A的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為t秒、求t為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線(xiàn)AC相切.
(1)∵點(diǎn)A的坐標(biāo)為(-2,0),∠BAD=60°,∠AOD=90°,
∴OD=OA•tan60°=2
3
,
∴點(diǎn)D的坐標(biāo)為(0,2
3
),(1分)
設(shè)直線(xiàn)AD的函數(shù)表達(dá)式為y=kx+b,
-2k+b=0
b=2
3
,
解得
k=
3
b=2
3

∴直線(xiàn)AD的函數(shù)表達(dá)式為y=
3
x+2
3
.(3分)

(2)∵四邊形ABCD是菱形,
∴∠DCB=∠BAD=60°,
∴∠1=∠2=∠3=∠4=30°,
AD=DC=CB=BA=4,(5分)
如圖所示:
①點(diǎn)P在AD上與AC相切時(shí),
連接P1E,則P1E⊥AC,P1E=r,
∵∠1=30°,
∴AP1=2r=2,
∴t1=2.(6分)
②點(diǎn)P在DC上與AC相切時(shí),
CP2=2r=2,
∴AD+DP2=6,
∴t2=6.(7分)
③點(diǎn)P在BC上與AC相切時(shí),
CP3=2r=2,
∴AD+DC+CP3=10,
∴t3=10.(8分)
④點(diǎn)P在AB上與AC相切時(shí),
AP4=2r=2,
∴AD+DC+CB+BP4=14,
∴t4=14,
∴當(dāng)t=2、6、10、14時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線(xiàn)AC相切.(9分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△ABC中∠C=90°、∠A=30°,在AC邊上取點(diǎn)O畫(huà)圓使⊙O經(jīng)過(guò)A、B兩點(diǎn),
(1)求證:以O(shè)為圓心,以O(shè)C為半徑的圓與AB相切.
(2)下列結(jié)論正確的序號(hào)是______.(少選酌情給分,多選、錯(cuò)均不給分)
①AO=2CO;
②AO=BC;
③延長(zhǎng)BC交⊙O與D,則A、B、D是⊙O的三等分點(diǎn).
④圖中陰影面積為:(
1
3
π+
3
8
)•OA2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知⊙O1經(jīng)過(guò)A(-4,2),B(-3,3),C(-1,-1),O(0,0)四點(diǎn),一次函數(shù)y=-x-2的圖象是直線(xiàn)l,直線(xiàn)l與y軸交于點(diǎn)D.
(1)在右邊的平面直角坐標(biāo)系中畫(huà)出⊙O1,直線(xiàn)l與⊙O1的交點(diǎn)坐標(biāo)為_(kāi)_____;
(2)若⊙O1上存在整點(diǎn)P(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn)),使得△APD為等腰三角形,所有滿(mǎn)足條件的點(diǎn)P坐標(biāo)為_(kāi)_____;
(3)將⊙O1沿x軸向右平移______個(gè)單位時(shí),⊙O1與y相切;
(4)將⊙O1沿x軸向右平移______個(gè)單位時(shí),⊙O1與l相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義:定點(diǎn)與⊙O上任意一點(diǎn)之間距離的最小值稱(chēng)為點(diǎn)與⊙O之間的距離.現(xiàn)有一矩形ABCD如圖所示,AB=14,BC=12,⊙O與矩形的邊AB、BC、CD分別相切于點(diǎn)E、F、G,則點(diǎn)A與⊙O之間的距離為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點(diǎn)O為圓心,半徑為2的圓與y軸交于點(diǎn)A,點(diǎn)P(4,2)是⊙O外一點(diǎn),連接AP,直線(xiàn)PB與⊙O相切于點(diǎn)B,交x軸于點(diǎn)C.
(1)證明PA是⊙O的切線(xiàn);
(2)求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知AB、AC分別為⊙O的直徑和弦,D為
BC
的中點(diǎn),DE垂直于AC的延長(zhǎng)線(xiàn)于E,連接BC,若DE=6cm,CE=2cm,下列結(jié)論一定錯(cuò)誤的是( 。
A.DE是⊙O的切線(xiàn)B.直徑AB長(zhǎng)為20cm
C.弦AC長(zhǎng)為16cmD.C為
AD
的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線(xiàn)AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE
(1)判斷直線(xiàn)CE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線(xiàn)AB與⊙O相切于點(diǎn)A,⊙O的半徑為2,若∠OBA=30°,則OB的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

兩同心圓的半徑分別是10和6,大圓的弦AB長(zhǎng)16.AB與小圓的位置關(guān)系是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案