【題目】按下面的方法折紙,然后回答問題:
(1)∠1與∠AEC有何關(guān)系?
(2)∠1,∠3有何關(guān)系?
(3)∠2是多少度的角?請說明理由.
【答案】(1)互補(bǔ);(2)互余;(3)90°
【解析】試題分析:(1)由折疊易得∠2是平角的一半;
(2)∠1、∠2、∠3組成一個平角,∠2是90°,那么∠1與∠3互余;
(3)∠1與∠AEC,∠3與∠BEF都組成一個平角,是互補(bǔ).
試題解析:(1)∠2是90°的角。
過點E作出AB、EC的折痕,設(shè)BE、CE與EG重合,由折紙可知:
∠1=∠AEG,∠3=∠FEG,
∴∠1+∠3=∠AEG+∠FEG,
∵∠1+∠3+∠AEG+∠FEG=180°,
∴∠1+∠3=∠AEG+∠FEG=180°÷2=90°,
即∠2=90°.
(2)∠1與∠3互為余角,或∠1+∠3=90°;
(3)∠1與∠AEC互補(bǔ),∠3與∠BEF互補(bǔ)。
或∠1+∠AEC=180°,∠3+∠BEF=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家準(zhǔn)備春節(jié)前舉行80人的聚餐,需要去某餐館訂餐.據(jù)了解餐館有10人坐和8人坐兩種餐桌,要使所訂的每個餐桌剛好坐滿,則訂餐方案共有______種.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若某拋物線上有兩點A、B關(guān)于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)(a,m,c均為常數(shù)且ac)是“完美拋物線”:
(1)試判斷ac的符號;
(2)若c=-1,該二次函數(shù)圖像與y軸交于點C,且.
①求a的值;
②當(dāng)該二次函數(shù)圖像與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年度,連云港港口的吞吐量比上一年度增加31 000 000噸,創(chuàng)年度增量的最高紀(jì)錄,其中數(shù)據(jù)“31 000 000”用科學(xué)記數(shù)法表示為( )
A.3.1×107
B.3.1×106
C.31×106
D.0.31×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=6 ,點D為直線AB上一點,且AB=3BD,直線CD與直線BC所夾銳角的正切值為 ,并且CD⊥AC,則BC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣九年級有15000名學(xué)生參加安全應(yīng)急預(yù)案知識競賽活動,為了了解本次知識競賽的成績分布情況,從中抽取了400名學(xué)生的得分(得分取正整數(shù),滿分100分)進(jìn)行統(tǒng)計:
請結(jié)合圖表完成下列問題:
(1)表中的 ,b= , c= ;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若將得分轉(zhuǎn)化為等級,規(guī)定得分低于59.5分評為“D”,59.5~69.5分評為“C”,69.5~89.5分評為“B”,89.5~100.5分評為“A”,這次15000名學(xué)生中約有多少人被評為“B”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作一個角等于已知角
已知:∠AOB,
求作:∠A′OB′,使:∠A′OB′=∠AOB
小易同學(xué)作法如下:
①作射線O′A′;
②以點O為圓心,以任意長為半徑作弧,交OA于C,交OB于D;
③以點O′為圓心,以OC長為半徑作弧,交O′A于C
④以點C′圓心,以CD為半徑作弧,交③中所畫弧于D′;
⑤經(jīng)過點D′作射線O′B′,∠A′O′B′就是所求的角.
老師說:“小易的作法正確”
請回答:小易的作圖依據(jù)是______________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(0,4)、B(3,0),連接AB,將△AOB沿過點B的直線折疊,使點A落在x軸上的點A′處,折痕所在的直線交y軸正半軸于點C,則直線BC的解析式為( 。
A. y=﹣x+ B. y=﹣x+ C. y=﹣x+ D. y=﹣2x+
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com