【題目】如圖,Q為正方形ABCD的CD邊上一點(diǎn),CQ=1,DQ=2,P為BC上一點(diǎn),若PQ⊥AQ,則CP=_____.
【答案】
【解析】
證明△ADQ∽△QCP:已知的條件有∠C=∠D=90°,那么只要得出另外兩組對(duì)應(yīng)角相等即可得出兩三角形相似,因?yàn)椤?/span>DQA+∠CQP=180°-90°=90°,而∠DAQ+∠DQA=90°,因此∠CQP=∠DAQ,那么就構(gòu)成了兩三角形相似的條件;然后由相似三角形的對(duì)應(yīng)邊成比例、正方形的四條邊都相等及已知條件CQ=1,DQ=2求解即可.
解:∵PQ⊥AQ,
∴∠DQA+∠CQP=180°-90°=90°;
又∵四邊形ABCD是正方形,
∴∠DAQ+∠DQA=90°,
∴∠CQP=∠DAQ,
∴ADQ∽△QCP,
,
∵CQ=1,DQ=2,
∴AD=DC=3;
∴CP=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長(zhǎng)BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,防洪大堤的橫斷面是梯形ABCD,其中AD//BC,坡長(zhǎng)AB=10cm,坡角,汛期來臨前對(duì)其進(jìn)行了加固,改造后的背水面坡角.(注:請(qǐng)?jiān)诮Y(jié)果中保留根號(hào))
(1)試求出防洪大堤的橫斷面的高度;
(2)請(qǐng)求出改造后的坡長(zhǎng)AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的個(gè)數(shù)是( 。
(1)一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形是六邊形;
(2)如果一個(gè)三角形的三邊長(zhǎng)分別為6、8、10,則最長(zhǎng)邊上的中線長(zhǎng)為5;
(3)若△ABC∽△DEF,相似比為1:4,則S△ABC:S△DEF=1:4;
(4)若等腰三角形一個(gè)角為80°,則底角為80°或50°.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為10,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=45°,AH⊥EF于點(diǎn)H,AH=10,連接BD,分別交AE、AH、AF于點(diǎn)P、G、Q.
(1)求△CEF的周長(zhǎng);
(2)若E是BC的中點(diǎn),求證:CF=2DF;
(3)連接QE,求證:AQ=EQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(2,y1)、B(4,y2)都在反比例函數(shù)(k<0)的圖象上,則y1、y2的大小關(guān)系為( 。
A. y1>y2 B. y1<y2 C. y1=y2 D. 無法確定
【答案】B
【解析】試題∵當(dāng)k<0時(shí),y=在每個(gè)象限內(nèi),y隨x的增大而增大,∴y1<y2,故選B.
考點(diǎn):反比例函數(shù)增減性.
【題型】單選題
【結(jié)束】
17
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動(dòng)點(diǎn),PG⊥AC于點(diǎn)G,PH⊥AB
于點(diǎn)H,M是GH的中點(diǎn),P在運(yùn)動(dòng)過程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示:
(1)甲乙兩地相距 千米,慢車速度為 千米/小時(shí).
(2)求快車速度是多少?
(3)求從兩車相遇到快車到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式.
(4)直接寫出兩車相距300千米時(shí)的x值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“文化宜昌全民閱讀”活動(dòng)中,某中學(xué)社團(tuán)“精一讀書社”對(duì)全校學(xué)生的人數(shù)及紙質(zhì)圖書閱讀量(單位:本)進(jìn)行了調(diào)查,2012年全校有1000名學(xué)生,2013年全校學(xué)生人數(shù)比2012年增加10%,2014年全校學(xué)生人數(shù)比2013年增加100人.
(1)求2014年全校學(xué)生人數(shù);
(2)2013年全校學(xué)生人均閱讀量比2012年多1本,閱讀總量比2012年增加1700本(注:閱讀總量=人均閱讀量×人數(shù))
①求2012年全校學(xué)生人均閱讀量;
②2012年讀書社人均閱讀量是全校學(xué)生人均閱讀量的2.5倍,如果2012年、2014年這兩年讀書社人均閱讀量都比前一年增長(zhǎng)一個(gè)相同的百分?jǐn)?shù)a,2014年全校學(xué)生人均閱讀量比2012年增加的百分?jǐn)?shù)也是a,那么2014年讀書社全部80名成員的閱讀總量將達(dá)到全校學(xué)生閱讀總量的25%,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com