【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),作射線AD,在線段AD及其延長(zhǎng)線上分別取點(diǎn)E,F,連結(jié)CE,BF.添加一個(gè)條件,使得△BDF≌△CDE,你添加的條件是_____________________(不添加輔助線).
【答案】DF=DE或∠FBD=∠ECD或∠DFB=∠DEC或BF∥CE(任選其一即可).
【解析】
先找到證△BDF≌△CDE的已知條件,然后根據(jù)全等三角形的判定定理添加條件即可.
解:∵點(diǎn)D是BC的中點(diǎn),
∴BD=CD
∵∠BDF=∠CDE
若添加DF=DE,可用SAS證△BDF≌△CDE;
若添加∠FBD=∠ECD,可用ASA證△BDF≌△CDE;
若添加∠DFB=∠DEC,可用AAS證△BDF≌△CDE;
若添加BF∥CE,可先證出∠FBD=∠ECD,然后用ASA證△BDF≌△CDE;
故答案為:DF=DE或∠FBD=∠ECD或∠DFB=∠DEC或BF∥CE(任選其一即可).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長(zhǎng)最快的新品種.圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)了如何證明“三邊成比例的兩個(gè)三角形相似”后,運(yùn)用類似的思路證明了“兩角分別相等的兩個(gè)三角形相似”,以下是具體過(guò)程.
已知:如圖,在△ABC和△中,∠A=∠,∠B=∠.
求證:△ABC∽△.
證明:在線段上截取,過(guò)點(diǎn)D作DE∥,交于點(diǎn)E.
由此得到△∽△.
∴∠=∠,
∵∠B=∠,
∴∠=∠B,
∵∠=∠A,
∴△≌△ABC,
∴△ABC∽△.
小明將證明的基本思路概括如下,請(qǐng)補(bǔ)充完整:
(1)首先,通過(guò)作平行線,依據(jù)__________,可以判定所作△與_________;
(2)然后,再依據(jù)相似三角形的對(duì)應(yīng)角相等和已知條件可以證明所作△與________;
(3)最后,可證得△ABC∽△.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料并解答問(wèn)題
材料:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
解:由分母為,可設(shè),
則
∵對(duì)任意上述等式均成立,
∴且,∴,
∴
這樣,分式被拆分成了一個(gè)整式與一個(gè)分式的和
解答:(1)將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式
(2)求出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)D在的AB邊上,且.
(1)作的平分線DE,交BC于點(diǎn)E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,判斷直線DE與直線AC的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,且CD=CB,∠ABC+∠ADC=180°.求證:AE=(AB+AD).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)D是等邊△ABC內(nèi)一點(diǎn),DA=13,DB=19,DC=21,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACE的位置,求△DEC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的文字,解答問(wèn)題大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來(lái), 而由于,所以的整數(shù)部分為,將 減去其整數(shù)部分,所得的差就是其小數(shù)部分,根據(jù)以上內(nèi)容,解答下面的問(wèn)題:
的整數(shù)部分是 ;小數(shù)部分是 .
的整數(shù)部分是 ,小數(shù)部分是 .
若設(shè)整數(shù)部分為,小數(shù)部分為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com