【題目】如圖,已知∠1=∠2,DE⊥BC,AB⊥BC,求證:∠A=∠3.
證明:∵ DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°( )
∴DE∥AB(_________ ___)
∴∠2=____ (__________ ___________)
∠1= (____________ _________)
又∵∠1=∠2(_____________________)
∴∠A=∠3(_____________________)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點B,直線l2經(jīng)過點D(0,5),與直線l1交于點C(﹣1,m),且與x軸交于點A,
(1)求點C的坐標及直線l2的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學課外活動小組在學習了銳角三角函數(shù)后,組織了一次利用自制的測角儀測量古塔高度的活動.具體方法如下:在古塔前的平地上選擇一點E,某同學站在E點用測角儀測得古塔頂?shù)难鼋菫?/span>30°,從E向著古塔前進12米后到達點F,又測得古塔頂?shù)难鼋菫?/span>45°,并繪制了如圖的示意圖(圖中線段AE=BF=1.6米,表示測角的學生眼睛到地面的高度).請你幫著計算古塔CD的高度(結果保留整數(shù),參考數(shù)據(jù):).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ACB和△ECD均為等腰直角三角形,∠ACB=∠ECD=90°.
(1)如圖1,點E在BC上,則線段AE和BD有怎樣的關系?請直接寫出結論(不需證明);
(2)若將△DCE繞點C旋轉(zhuǎn)一定的角度得圖2,則(1)中的結論是否仍然成立?請說明理由;
(3)當△DCE旋轉(zhuǎn)到使∠ADC=90°時,若AC=5,CD=3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了綠化環(huán)境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的扇形統(tǒng)計圖和不完整的條形統(tǒng)計圖:
請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.
(1)植樹3株的人數(shù)為 ;
(2)扇形統(tǒng)計圖中植樹為1株的扇形圓心角的度數(shù)為 ;
(3)該班同學植樹株數(shù)的中位數(shù)是
(4)小明以下方法計算出該班同學平均植樹的株數(shù)是:(1+2+3+4+5)÷5=3(株),根據(jù)你所學的統(tǒng)計知識
判斷小明的計算是否正確,若不正確,請寫出正確的算式,并計算出結果
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人同時登山,甲乙兩人距地面的高度(米與登山時間(分之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山的速度是 米分鐘,乙在地提速時距地面的高度為 米;
(2)直接寫出甲距地面高度(米和(分之間的函數(shù)關系式;
(3)若乙提速后,乙的速度是甲登山速度的3倍.請問登山多長時間時,乙追上了甲,此時乙距地的高度為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段和,直線和相交于點,,利用尺規(guī),按下列要求作圖(不寫作法,保留作圖痕跡):
(1)在射線,上分別作線段,,使它們分別與線段相等,在射線,上分別作線段,,使它們分別與線段相等;
(2)分別連接線段,,,,你得到了一個怎樣的圖形?
(3)點與點之間的所有連線中,哪條最短?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,頂點B與原點O重合,點C在x軸的正半軸上,過點B作BA1⊥AC于點A1,過點A1作A1B1∥OA,交OC于點B1;過點B1作B1A2⊥AC于點A2,過點A2作A2B2∥OA,交OC于點B2;……,按此規(guī)律進行下去,點A2020的縱坐標是_______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com