將圖所示的長(zhǎng)方體石塊(a>b>c)放入一圓柱形水槽內(nèi),并向水槽內(nèi)勻速注水,速度為vcm3/s,直至注滿水槽為止.石塊可以用三種不同的方式完全放入水槽內(nèi),如圖1~圖3所示.在這三種情況下,水槽內(nèi)的水深hcm與注水時(shí)間ts的函數(shù)關(guān)系如圖4~圖6所示.根據(jù)圖象完成下列問題:
(1)請(qǐng)分別將三種放置方式的示意圖和與之相對(duì)應(yīng)的函數(shù)關(guān)系圖象用線連接起來(lái);
(2)水槽的高=______cm;石塊的長(zhǎng)a=______cm;寬b=______cm;高c=______cm;
(3)求圖5中直線CD的函數(shù)關(guān)系式;
(4)求圓柱形水槽的底面積S.

(1)圖1與圖4相對(duì)應(yīng),圖2與圖6相對(duì)應(yīng),圖3與圖5相對(duì)應(yīng);

(2)由圖4、5和6可知水槽的高=10cm;由圖2和圖6可知石塊的長(zhǎng)a=10cm;
由圖3和圖5可知寬b=9cm;由圖1和圖4可知高c=6cm;

(3)由題意可知C點(diǎn)的坐標(biāo)為(45,9),D點(diǎn)的坐標(biāo)為(53,10),
設(shè)直線CD的函數(shù)關(guān)系式為h=kt+b,
9=45k+b
10=53k+b
解得
k=
1
8
b=
27
8
.

∴直線CD的函數(shù)關(guān)系式為h=
1
8
t+
27
8


(4)石塊的體積為abc=540cm3
根據(jù)圖4和圖6可得:
10S-540
53
=
(10-6)S
53-21
,
解得S=160cm2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為A(0,1),與x軸的交點(diǎn)坐標(biāo)為B(-3,0);P、Q分別是x軸和直線AB上的一動(dòng)點(diǎn),在運(yùn)動(dòng)過(guò)程中,始終保持QA=QP;△APQ沿直線PQ翻折得到△CPQ,A點(diǎn)的對(duì)稱點(diǎn)是點(diǎn)C.
(1)求直線AB的解析式.
(2)是否存在點(diǎn)P,使得點(diǎn)C恰好落在直線AB上?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線MN:y=-x+b與x軸交于點(diǎn)M(4,0),與y軸交于點(diǎn)N,長(zhǎng)方形ABCD的邊AB在x軸上,AB=2,AD=1.長(zhǎng)方形ABCD由點(diǎn)A與點(diǎn)O重合的位置開始,以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向作勻速直線運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)M重合時(shí)停止運(yùn)動(dòng).設(shè)長(zhǎng)方形運(yùn)動(dòng)的時(shí)間為t秒,長(zhǎng)方形ABCD與△OMN重合部分的面積為S.
(1)求直線MN的解析式;
(2)當(dāng)t=1時(shí),請(qǐng)判斷點(diǎn)C是否在直線MN上,并說(shuō)明理由;
(3)請(qǐng)求出當(dāng)t為何值時(shí),點(diǎn)D在直線MN上;
(4)直接寫出在整個(gè)運(yùn)動(dòng)過(guò)程中S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線y=kx-1與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,O為坐標(biāo)原點(diǎn),k<0,∠BAO=30°.以線段AB為邊在第三象限內(nèi)作等邊△ABC.
(1)求出k的值;
(2)求出點(diǎn)C的坐標(biāo);
(3)若在第三象限內(nèi)有一點(diǎn)P(m,-
1
2
),且△ABP的面積和△ABC的面積相等,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,某地區(qū)對(duì)某種藥品的需求量y1(萬(wàn)件),供應(yīng)量y2(萬(wàn)件)與價(jià)格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+70,y2=2x-38,需求量為0時(shí),即停止供應(yīng).當(dāng)y1=y2時(shí),該藥品的價(jià)格稱為穩(wěn)定價(jià)格,需求量稱為穩(wěn)定需求量.
(1)求該藥品的穩(wěn)定價(jià)格與穩(wěn)定需求量.
(2)價(jià)格在什么范圍內(nèi),該藥品的需求量低于供應(yīng)量?
(3)由于該地區(qū)突發(fā)疫情,政府部門決定對(duì)藥品供應(yīng)方提供價(jià)格補(bǔ)貼來(lái)提高供貨價(jià)格,以利提高供應(yīng)量.根據(jù)調(diào)查統(tǒng)計(jì),需將穩(wěn)定需求量增加6萬(wàn)件,政府應(yīng)對(duì)每件藥品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有甲、乙兩家通訊公司,甲公司每月通話(不分通話地點(diǎn))的收費(fèi)標(biāo)準(zhǔn)如圖所示;乙公司每月通話的收費(fèi)標(biāo)準(zhǔn)如圖所示:
乙公司每月的收費(fèi)標(biāo)準(zhǔn)
月租費(fèi)本市接聽費(fèi)本市接打費(fèi)外市通話費(fèi)
50元0元/分0.10元/分0.90元/分
(1)觀察圖1,寫出甲公司用戶月通話時(shí)間不超過(guò)400分鐘時(shí)應(yīng)付的話費(fèi)金額;
(2)求出甲公司的用戶超過(guò)400分鐘后,通話費(fèi)用y(元)與通話時(shí)間t(分)之間的函數(shù)關(guān)系式;(寫出解題過(guò)程)
(3)王先生由于工作需要,從4月份開始經(jīng)常外市出差,估計(jì)每月各種通話時(shí)間的比例是,本地接聽時(shí)間:本地?fù)艽驎r(shí)間:外地通話時(shí)間=2:1:1,設(shè)王先生每月的各種通話時(shí)間總和為t(分),通話費(fèi)用為y(元).你認(rèn)為t為多少分鐘時(shí),乙公司和甲公司的收費(fèi)一樣多?請(qǐng)用計(jì)算方法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將長(zhǎng)、寬、高分別為a,b,c(a>b>c,單位:cm)的三塊相同的長(zhǎng)方體按圖所示的三種方式放入三個(gè)底面面直徑為d(d>
a2+b2
),高為h的相同圓柱形水桶中,再向三個(gè)水桶內(nèi)以相同的速度勻速注水,直至注滿水桶為止,水桶內(nèi)的水深y(cm)與注水時(shí)間t(s)的函數(shù)關(guān)系如圖所示,則注水速度為( 。
A.30cm2/sB.32cm2/sC.34cm2/sD.40cm2/s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=
2
3
x-2
的圖象經(jīng)過(guò)點(diǎn)(______,0)和(0,______),它與坐標(biāo)軸圍成的三角形面積等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線l的解析式為y=-x+4,它與x軸、y軸分別相交于A、B兩點(diǎn).平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),它與x軸、y軸分別相交于M、N兩點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤4).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)以MN為對(duì)角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S1,在直線m的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),S1為△OAB面積的
5
16
?

查看答案和解析>>

同步練習(xí)冊(cè)答案