精英家教網 > 初中數學 > 題目詳情
某一型號飛機著陸后滑行的距離y(單位:m)與滑行時間x(單位:s)之間的函數關系式是y=60x-1.5x2,該型號飛機著陸后滑行________m才能停下來.
600
∵-1.5<0,∴函數有最大值.
∴S最大值=600,
即飛機著陸后滑行600米才能停止.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”,已知點C的坐標為(0,-),點M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點.

(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限內是否存在一點P,使得∆PBC的面積最大?若存在,求出∆PBC面積的最大值;若不存在,請說明理由;
(3)當∆BDM為直角三角形時,請直接寫出m的值.(參考公式:在平面直角坐標系中,若M(x1,y1),N(x2,y2),則M、N兩點間的距離為MN=.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖(1),直線與x軸交于點A、與y軸交于點D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線經過等腰梯形的四個頂點.

圖(1)
(1) 求拋物線的解析式;
(2) 如圖(2)若點P為BC上的—個動點(與B、C不重合),以P為圓心,BP長為半徑作圓,與軸的另一個交點為E,作EF⊥AD,垂足為F,請判斷EF與⊙P的位置關系,并給以證明;

圖(2)
(3) 在(2)的條件下,是否存在點P,使⊙P與y軸相切,如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

西寧中心廣場有各種音樂噴泉,其中一個噴水管噴水的最大高度為3米,此時距噴水管的水平距離為米,在如圖所示的坐標系中,這個噴泉的函數關系式是(  )
A.y=-+3B.y=-3+3
C.y=-12+3D.y=-12+3

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

拋物線y=-x2+2x+3的頂點坐標是(  )
A.(-1,4) B.(1,3) C.(-1,3) D.(1,4)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

甲、乙兩位同學對問題“求代數式的最小值”提出各自的想法.甲說:“可以利用已經學過的完全平方公式,把它配方成,所以代數式的最小值為-2”.乙說:“我也用配方法,但我配成,最小值為2”.你認為(    )
A.甲對B.乙對C.甲、乙都對D.甲乙都不對

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,已知拋物線與x軸的一個交點為A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點坐標是(  )
A.(-3,0)B.(-2,0)
C.x=-3D.x=-2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知二次函數y=-x2-7x+,若自變量x分別取x1,x2,x3,且0<x1<x2<x3,則對應的函數值y1,y2,y3的大小關系正確的是(  )
A.y1>y2>y3B.y1<y2<y3
C.y2>y3>y1D.y2<y3<y1

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點D、E、F分別是邊AB,BC,AC的中點,連接DE,DF,動點P,Q分別從點A、B同時出發(fā),運動速度均為1cm/s,點P沿AFD的方向運動到點D停止;點Q沿BC的方向運動,當點P停止運動時,點Q也停止運動.在運動過程中,過點Q作BC的垂線交AB于點M,以點P,M,Q為頂點作平行四邊形PMQN.設平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為y(cm2)(這里規(guī)定線段是面積為0有幾何圖形),點P運動的時間為x(s)

(1)當點P運動到點F時,CQ=          cm;
(2)在點P從點F運動到點D的過程中,某一時刻,點P落在MQ上,求此時BQ的長度;
(3)當點P在線段FD上運動時,求y與x之間的函數關系式.

查看答案和解析>>

同步練習冊答案