精英家教網 > 初中數學 > 題目詳情

已知⊙O的半徑為2cm,弦AB的長為2數學公式,則這條弦的中點到弦所對優(yōu)弧的中點的距離為


  1. A.
    1cm
  2. B.
    3cm
  3. C.
    (2+數學公式)cm
  4. D.
    (2+數學公式)cm
B
分析:畫出圖形后連接OA,根據垂徑定理得出CD過O,AD=BD=cm,OD⊥AB,根據勾股定理求出OD長,即可求出CD.
解答:
連接OA,
∵D為AB中點,OD過圓心O,C為弧ACB的中點,
∴由垂徑定理得:CD過O,AD=BD=cm,OD⊥AB,
∵在△ODA中,OA=2cm,AD=cm,由勾股定理得:OD=1cm,
∴CD=OC+OD=2cm+1cm=3cm,
故選B.
點評:本題考查了勾股定理和垂徑定理的應用,解此題的關鍵是構造直角三角形后求出OD長,題目比較典型,難度適中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知⊙0的半徑為1,圓心0到直線l的距離為2,過l上任一點A作⊙0的切線,切點為B,則線段AB的最小值為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:初中數學 來源: 題型:

6、已知⊙O1的半徑為2,⊙O2的半徑為R,兩圓的圓心距O1O2=5.使⊙O1與⊙O2相交,則請選出一個滿足條件的R值( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

4、已知⊙O的半徑為1,⊙O外有一點C,且CO=3.以C為圓心,作一個半徑為r的圓,使⊙O與⊙C相交,則( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知⊙O的半徑為2cm,弦AB長為2
3
cm,則圓心到這條弦的距離為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

5、已知⊙O1的半徑為3,⊙O1與⊙O2相交,圓心距是5,則⊙O2的半徑可以是( 。

查看答案和解析>>

同步練習冊答案