(2008•棗莊)在直角坐標平面中,O為坐標原點,二次函數(shù)y=-x2+(k-1)x+4的圖象與y軸交于點A,與x軸的負半軸交于點B,且S△OAB=6.
(1)求點A與點B的坐標;
(2)求此二次函數(shù)的解析式;
(3)如果點P在x軸上,且△ABP是等腰三角形,求點P的坐標.

【答案】分析:(1)令x=0,即可求得點A的坐標,由△AOB的面積公式可求得OB的長,進而得到點B的坐標;
(2)把點B的坐標代入拋物線的解析式,可求得k的值,確定出拋物線解析式;
(3)若△ABP是等腰三角形,且點P在x軸上,故點P的位置有三種情況,由等腰三角形的性質(zhì)分別求得即可
解答:解:(1)由解析式可知,點A的坐標為(0,4).(1分)
∵S△OAB=×BO×4=6
BO=3.所以B(3,0)或(-3,0),
∵二次函數(shù)與x軸的負半軸交于點B,
∴點B的坐標為(-3,0);(2分)

(2)把點B的坐標(-3,0)代入y=-x2+(k-1)x+4,
得-(-3)2+(k-1)×(-3)+4=0.
解得k-1=-.(4分)
∴所求二次函數(shù)的解析式為y=-x2-x+4.(5分)

(3)因為△ABP是等腰三角形,
所以:①如圖1,當AB=AP時,點P的坐標為(3,0)(6分)
②如圖2,當AB=BP時,點P的坐標為(2,0)或(-8,0)(8分)
③如圖,3,當AP=BP時,設點P的坐標為(x,0)根據(jù)題意,得=|x+3|.
解得x=
∴點P的坐標為(,0)(10分)
綜上所述,點P的坐標為(3,0),(2,0),(-8,0),(,0).
點評:本題考查了拋物線與坐標軸的關系,等腰三角形的性質(zhì),注意當△ABP是等腰三角形時,點P的位置有三種情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•棗莊)在直角坐標平面中,O為坐標原點,二次函數(shù)y=-x2+(k-1)x+4的圖象與y軸交于點A,與x軸的負半軸交于點B,且S△OAB=6.
(1)求點A與點B的坐標;
(2)求此二次函數(shù)的解析式;
(3)如果點P在x軸上,且△ABP是等腰三角形,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省寧波市鎮(zhèn)海應行久外語實驗學校中考模擬試卷(余滿龍)(解析版) 題型:解答題

(2008•棗莊)在直角坐標平面中,O為坐標原點,二次函數(shù)y=-x2+(k-1)x+4的圖象與y軸交于點A,與x軸的負半軸交于點B,且S△OAB=6.
(1)求點A與點B的坐標;
(2)求此二次函數(shù)的解析式;
(3)如果點P在x軸上,且△ABP是等腰三角形,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山東省日照市中考數(shù)學模擬試卷5(李鳳榮)(解析版) 題型:解答題

(2008•棗莊)在直角坐標平面中,O為坐標原點,二次函數(shù)y=-x2+(k-1)x+4的圖象與y軸交于點A,與x軸的負半軸交于點B,且S△OAB=6.
(1)求點A與點B的坐標;
(2)求此二次函數(shù)的解析式;
(3)如果點P在x軸上,且△ABP是等腰三角形,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省十堰市鄖西縣中考適應性考試數(shù)學試卷(解析版) 題型:解答題

(2008•棗莊)在直角坐標平面中,O為坐標原點,二次函數(shù)y=-x2+(k-1)x+4的圖象與y軸交于點A,與x軸的負半軸交于點B,且S△OAB=6.
(1)求點A與點B的坐標;
(2)求此二次函數(shù)的解析式;
(3)如果點P在x軸上,且△ABP是等腰三角形,求點P的坐標.

查看答案和解析>>

同步練習冊答案