(本題10分)如圖,AB是⊙O的直徑,BC是弦,OD⊥BC于E,交于D.
(1)請寫出四個不同類型的正確結(jié)論;
(2)若BC = 8,ED = 2,求⊙O的半徑.
(1),,,
(2)半徑為5
解析試題分析:(1)因?yàn)镃在圓上,AB為直徑,所以;因?yàn)镺D⊥BC,所以;因?yàn)镺D和OB都為圓的半徑,所以;因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/b/pkbb2.png" style="vertical-align:middle;" />,所以,所以
(2)設(shè)半徑為,根據(jù)題意,列出方程為,所以求得
考點(diǎn):弦心距與半徑的關(guān)系
點(diǎn)評:本題難度不大,第一小題可以有多個答案,只要合理即可,第二小題弦心距與半徑關(guān)系的計算,難度也不大,學(xué)生只需要謹(jǐn)慎仔細(xì),一般可以做得出來
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點(diǎn),這兩條線的交點(diǎn)為P.
1.(1)求點(diǎn)P的坐標(biāo).
2.(2)求△APB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,P是雙曲線的一個分支上的一點(diǎn),以點(diǎn)P為圓心,1個單位長度為半徑作⊙P,設(shè)點(diǎn)P的坐標(biāo)為(,).
(1)求當(dāng)為何值時,⊙P與直線相切,并求點(diǎn)P的坐標(biāo).
(2)直接寫出當(dāng)為何值時,⊙P與直線相交、相離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,以點(diǎn)M(-1,0)為圓心的圓與y軸、x軸分別交于點(diǎn)A、B、C、D,直線y=- x- 與⊙M相切于點(diǎn)H,交x軸于點(diǎn)E,交y軸于點(diǎn)F.
1.(1)請直接寫出OE、⊙M的半徑r、CH的長;(3分)
2.(2)如圖1,弦HQ交x軸于點(diǎn)P,且DP:PH=3:2,求COS∠QHC的值;(3分)
3.(3)如圖2,點(diǎn)K為線段EC上一動點(diǎn)(不與E、C重合),連接BK交⊙M于點(diǎn)T,弦AT交x軸于點(diǎn)N.是否存在一個常數(shù)a,始終滿足MN·MK=a,如果存在,請求出a的值;如果不存在,請說明理由.(3分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北武夷山市九年級上學(xué)期期末考試數(shù)學(xué)卷.doc 題型:解答題
(本題10分)如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB分別交于點(diǎn)D、E,且∠CBD=∠A.
試判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年北京師大附中初一第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題10分)如圖4,邊長為的矩形,它的周長為14,面積為10,求下列各式的值:(1) (2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com