【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分ABC,P是BD上一點,過點P作PM^AD,PN^CD,垂足分別為M、N。
(1)求證:ADB=CDB;
(2)若ADC=90°,求證:四邊形MPND是正方形。
【答案】見解析
【解析】
試題(1)根據(jù)角平分線的性質(zhì)和全等三角形的判定方法證明△ABD≌△CBD,由全等三角形的性質(zhì)即可得到:∠ADB=∠CDB;
(2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據(jù)兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.
證明:(1)∵對角線BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB;
(2)∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°,
∵∠ADC=90°,
∴四邊形MPND是矩形,
∵∠ADB=∠CDB,
∴∠ADB=45°
∴PM=MD,
∴四邊形MPND是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】點P、Q分別是邊長為4cm的等邊的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是,設運動時間為t秒.
連接AQ、CP交于點M,則在P、Q運動的過程中,變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);
連接PQ,
當秒時,判斷的形狀,并說明理由;
當時,則______秒直接寫出結(jié)果
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,有張寫有實數(shù)的卡片,它們的背面都相同,現(xiàn)將它們背面朝上洗勻后如圖②擺放,從中任意翻開兩張都是無理數(shù)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學研究課上,老師出示如圖1所示的長方形紙條,,,然后在紙條上任意畫一條截線段,將紙片沿折疊,與交于點,得到,如圖2所示:
(1)若,求的大小;
(2)改變折痕位置,判斷的形狀,并說明理由;
(3)愛動腦筋的小明在研究的面積時,發(fā)現(xiàn)邊上的高始終是個不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出的面積最小值為,求的大;
(4)小明繼續(xù)動手操作,發(fā)現(xiàn)了面積的最大值,請你求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,的頂點坐標分別為,,.
如圖,求的面積.
若點的坐標為,
①請直接寫出線段的長為________(用含的式子表示);
②當時,求的值.
如圖,若交軸于點,直接寫出點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,當太陽在A處時,小明測得某樹的影長為2米,當太陽在B處時又測得該樹的影長為8米.若兩次日照的光線互相垂直,則這棵樹的高度為米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣ x2+bx+c與坐標軸分別交于點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C,D同時出發(fā),當動點D到達原點O時,點C,D停止運動.
(1)直接寫出拋物線的解析式:;
(2)求△CED的面積S與D點運動時間t的函數(shù)解析式;當t為何值時,△CED的面積最大?最大面積是多少?
(3)當△CED的面積最大時,在拋物線上是否存在點P(點E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:點B、E、F、C在同一直線上,∠A=∠D,BE=CF,且AB∥CD.求證:AF∥ED
證明:∵BE=FC
∴BE+EF=FC+EF(____________________________)
即:___________
∵AB∥CD
∴∠B=∠C(_________________________)
在△ABF和△DCE中,
∠A=∠D, ∠B=∠C, BF=CE
∴△ABF≌△DCE(________)
∴∠AFB=∠DEC(_________________________________)
∴AF∥ED(__________________________________)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com