【題目】(1)如圖1,∠AOC=α,∠BOC=β,若OM平分∠AOC,ON平分∠BOC,則∠MON= (用含α、β的式子表示);
(2)如圖2,若將∠BOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°后得到∠EOD,OM平分∠AOD,ON平分∠COE,求∠MON的度數(shù)(用含α、β的式子表示);
(3)若∠BOC旋轉(zhuǎn)90°至圖3的位置,其他條件不變,則∠MON的度數(shù)是 (用含α、β的式子表示).
【答案】(1);(2);(3)
【解析】
(1)∠MON=∠COM+CON,根據(jù)已知條件,求出∠COM和CON即可;
(2)由已知可得∠COD=30°,∠DOE=β,∠AOD=∠AOC+∠COD=α+30°,∠COE=∠COD+DOE=β+30°,根據(jù)∠MON=∠MOD+∠NOC﹣∠COD,代入數(shù)值求出即可;
(3)由已知可得∠COD=90°,∠DOE=β,∠AOD=∠AOC+COD=90°+α,∠COE=∠COD+DOE=β+90°,根據(jù)∠MON=∠MOD+∠NOC﹣∠COD,代入數(shù)值求出即可.
解:(1)∵∠AOC=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,
∴∠COM= ,∠CON=,
∴∠MON=∠COM+CON=;
故答案為:;
(2)由題意可知:∠COD=30°,∠DOE=β,∠AOD=∠AOC+∠COD=α+30°,∠COE=∠COD+DOE=β+30°,
∵OM平分∠AOD,ON平分∠COE,
∴∠MOD=∠AOD,∠NOC=,
∴∠MON=∠MOD+∠NOC﹣∠COD==;
(3)由題意可得,∠COD=90°,∠DOE=β,∠AOD=∠AOC+COD=90°+α,∠COE=∠COD+DOE=β+90°,
∵OM平分∠AOD,ON平分∠COE,
∴∠MOD=∠AOD,∠NOC=,
∴∠MON=∠MOD+∠NOC﹣∠COD==,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某網(wǎng)站調(diào)查,2016年全國網(wǎng)民們最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:
根據(jù)以上信息解答下列問題:
(1)請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)如果某市約有300萬人口,請你估計(jì)該市最關(guān)注教育問題的人數(shù)約為多少萬人?
(3)在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,請用列表法或樹形圖法表示抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016青海省西寧市)如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,適與岸齊問水深、葭長各幾何譯文大意是:如圖,有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.問水的深度與這根蘆葦?shù)拈L度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動(dòng)3個(gè)單位長度,再向左移動(dòng)5個(gè)單位長度,可以看到終點(diǎn)表示的數(shù)是-2,已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請參照圖并思考,完成下列各題.
(1)如果點(diǎn)A表示數(shù)-3,將點(diǎn)A向右移動(dòng)7個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是_____,A,B兩點(diǎn)間的距離是_____;
(2)如果點(diǎn)A表示數(shù)3,將A點(diǎn)向左移動(dòng)7個(gè)單位長度,再向右移動(dòng)5個(gè)單位長度,那么終點(diǎn)表示的數(shù)是_____,A,B兩點(diǎn)間的距離為_____;
(3)如果點(diǎn)A表示數(shù)-4,將A點(diǎn)向右移動(dòng)168個(gè)單位長度,再向左移動(dòng)256個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是_____,A、B兩點(diǎn)間的距離是_____;
(4)一般地,如果A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動(dòng)n個(gè)單位長度,再向左移動(dòng)p個(gè)單位長度,那么請你猜想終點(diǎn)B表示什么數(shù)?A,B兩點(diǎn)間的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問題時(shí),將一塊直角三角板的直角頂點(diǎn)繞矩形ABCD(AB<BC)的對角線的交點(diǎn)O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點(diǎn).
(1)該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖①中(三角板一邊與CC重合),BN、CN、CD這三條線段之間存在一定的數(shù)量關(guān)系:CN2=BN2+CD2,請你對這名成員在圖①中發(fā)現(xiàn)的結(jié)論說明理由;
(2)在圖③中(三角板一直角邊與OD重合),試探究圖③中BN、CN、CD這三條線段之間的數(shù)量關(guān)系,直接寫出你的結(jié)論.
(3)試探究圖②中BN、CN、CM、DM這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)多位自然數(shù)的任意兩個(gè)相鄰數(shù)位上,右邊數(shù)位上的數(shù)總比左邊數(shù)位上數(shù)大1,那么我們把這樣的自然數(shù)叫做“相連數(shù)”.例如:234,4567,56789,…都是“相連數(shù)”.
(1)請直接寫出最大的兩位“相連數(shù)”與最小的三位“相連數(shù)”,并求它們的差.
(2)若某個(gè)“相連數(shù)”恰好等于其個(gè)位數(shù)的469倍,求這個(gè)“相連數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,,為直線上一動(dòng)點(diǎn)(不與點(diǎn),重合),以為邊作正方形,連接.
(1)如圖1,當(dāng)點(diǎn)在線段上時(shí),請直接寫出:,,三條線段之間的數(shù)量關(guān)系為________.
(2)如圖2,當(dāng)點(diǎn)在線段的延長線上時(shí),其他條件不變.(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請你寫出正確的結(jié)論,并給出證明.
(3)如圖3,當(dāng)點(diǎn)在線段的反向延長線上時(shí),且點(diǎn),分別在直線的兩側(cè),其他條件不變.請直接寫出:,,三條線段之間的數(shù)量關(guān)系______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張矩形紙片ABCD按如圖方式折疊,使點(diǎn)A與點(diǎn)E重合,點(diǎn)C與點(diǎn)F重合(E、F兩點(diǎn)均在BD上),折痕分別為BH、DG.
(1)求證:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求線段FG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com