9.(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,求∠AEB的度數(shù).
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.

分析 (1)先證出∠ACD=∠BCE,那么△ACD≌△BCE,根據(jù)全等三角形證出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,從而證出∠AEB=60°;
(2)證明△ACD≌△BCE,得出∠ADC=∠BEC,最后證出DM=ME=CM即可.

解答 解:(1)∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=60°-∠CDB=∠BCE.
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°,
∴∠BEC=120°.
∴∠AEB=∠BEC-∠CED=60°.
(2)∠AEB=90°,AE=BE+2CM.
理由:∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
$\left\{\begin{array}{l}{CA=CB}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=135°,
∴∠BEC=135°.
∴∠AEB=∠BEC-∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.

點(diǎn)評 此題考查了全等三角形的判定與性質(zhì)和等腰三角形的判定與性質(zhì)以及等腰三角形的性質(zhì);證明三角形全等是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.(1)若x是方程4-4(x-3)=2(9-x)的解;y是方程6(2y-5)+20=4(1-2y)的解,求2(-3xy+x2)-[2x2-3(5xy-2x2)-xy]的值.
(2)解方程:$\frac{1.7-2x}{0.3}$=1-$\frac{1.2+2x}{0.6}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.計(jì)算:(6)0=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.若有理數(shù)a,b滿足ab<0,則$\frac{|a|}{a}+\frac{|b|}$的值為0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,線段AB與⊙O相切于點(diǎn)C,連接OA、OB,OB交⊙O于點(diǎn)D,已知OA=OB=6cm,∠B=30°.求:
(1)⊙O的半徑;(2)圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在長方形ABCD中,AB=4,AD=6,點(diǎn)E是線段AD上的一個(gè)動點(diǎn),點(diǎn)P是點(diǎn)A關(guān)于直線BE的對稱點(diǎn),在點(diǎn)E的運(yùn)動過程中,使△PBC為等腰三角形的點(diǎn)E的位置共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.無數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.已知反比例函數(shù)y1=$\frac{k}{x}$的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)(m,-2),則滿足y1>y2的自變量x的取值范圍是x<-2或0<x<1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.如圖,C是線段BD的中點(diǎn),AD=5,AC=12,則AB=19.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知:三直線l1:y=-x+5,l2:y=2x-1,l3:y=kx-3.
(1)如果l3平行于l2,求k的值;
(2)如果直線11與l3相交于x軸上的一點(diǎn),求k的值.

查看答案和解析>>

同步練習(xí)冊答案