【題目】如圖,數(shù)軸上,點(diǎn)A的初始位置表示的數(shù)為1,現(xiàn)點(diǎn)A做如下移動(dòng);第1次點(diǎn)A向左移動(dòng)3個(gè)單位長度至點(diǎn),第2次從點(diǎn)向右移動(dòng)6個(gè)單位長度至點(diǎn),第3次從點(diǎn)向左移動(dòng)9個(gè)單位長度至點(diǎn),…,按照這種移動(dòng)方式進(jìn)行下去,如果點(diǎn)與原點(diǎn)的距離不小于20,那么n的最小值是________.
【答案】13
【解析】
序號(hào)為奇數(shù)的點(diǎn)在點(diǎn)A的左邊,各點(diǎn)所表示的數(shù)依次減少3,序號(hào)為偶數(shù)的點(diǎn)在點(diǎn)A的右側(cè),各點(diǎn)所表示的數(shù)依次增加3,于是可得到A13表示的數(shù)為-17-3=-20,A12表示的數(shù)為16+3=19,則可判斷點(diǎn)An與原點(diǎn)的距離不小于20時(shí),n的最小值是13.
第一次點(diǎn)A向左移動(dòng)3個(gè)單位長度至點(diǎn)A1,則A1表示的數(shù),1-3=-2;
第2次從點(diǎn)A1向右移動(dòng)6個(gè)單位長度至點(diǎn)A2,則A2表示的數(shù)為-2+6=4;
第3次從點(diǎn)A2向左移動(dòng)9個(gè)單位長度至點(diǎn)A3,則A3表示的數(shù)為4-9=-5;
第4次從點(diǎn)A3向右移動(dòng)12個(gè)單位長度至點(diǎn)A4,則A4表示的數(shù)為-5+12=7;
第5次從點(diǎn)A4向左移動(dòng)15個(gè)單位長度至點(diǎn)A5,則A5表示的數(shù)為7-15=-8;
…;
則A7表示的數(shù)為-8-3=-11,A9表示的數(shù)為-11-3=-14,A11表示的數(shù)為-14-3=-17,A13表示的數(shù)為-17-3=-20,
A6表示的數(shù)為7+3=10,A8表示的數(shù)為10+3=13,A10表示的數(shù)為13+3=16,A12表示的數(shù)為16+3=19,
所以點(diǎn)An與原點(diǎn)的距離不小于20,那么n的最小值是13.
故答案為:13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分6分)某公司調(diào)查某中學(xué)學(xué)生對(duì)其環(huán)保產(chǎn)品的了解情況,隨機(jī)抽取該校部分學(xué)生進(jìn)行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
(1)本次問卷共隨機(jī)調(diào)查了 名學(xué)生,扇形統(tǒng)計(jì)圖中m= .
(2)請(qǐng)根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有1000名學(xué)生,估計(jì)選擇“非常了解”、“比較了解”共約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A,B,C,回答下列問題:
(1)若將點(diǎn)B向右移動(dòng)6個(gè)單位后,三個(gè)點(diǎn)所表示的數(shù)中最小的數(shù)是多少?
(2)在數(shù)軸上找一點(diǎn)D,使點(diǎn)D到A,C兩點(diǎn)的距離相等,寫出點(diǎn)D表示的數(shù);
(3)在點(diǎn)B左側(cè)找一點(diǎn)E,使點(diǎn)E到點(diǎn)A的距離是到點(diǎn)B的距離的2倍,并寫出點(diǎn)E表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”。圖中點(diǎn)A表示-10,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距28個(gè)長度單位,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,問:
(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至點(diǎn)C需要________秒;
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少?
(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元/件,該產(chǎn)品在正式投放市場前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試銷售,售價(jià)為8元/件,工作人員對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象(如圖),圖中的折線ODE表示日銷售量y(件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時(shí)間每增加1天,日銷售量減少5件.
(1)第24天的日銷售量是 件,日銷售利潤是 元;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)日銷售利潤不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,再解答下列問題:
題:分解因式:
解:將“”看成整體,設(shè),則原式=
再將“”還原,得原式=.
上述解題用到的是“整體思想”,“整體思想”是數(shù)學(xué)解題中常用的一種思想方法,請(qǐng)你仿照上面的方法解答下列問題:
(1)因式分解: ; .
(2)因式分解: ; .
(3)求證:若為正整數(shù),則式子的值一定是某一個(gè)正整數(shù)的平方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(新定義):A、B、C 為數(shù)軸上三點(diǎn),若點(diǎn) C 到 A 的距離是點(diǎn) C 到 B 的距離的 3 倍,我們就稱點(diǎn)
C 是(A,B)的幸運(yùn)點(diǎn).
(特例感知):
(1)如圖 1,點(diǎn) A 表示的數(shù)為﹣1,點(diǎn) B 表示的數(shù)為 3.表示 2 的點(diǎn) C 到點(diǎn) A 的距離是 3, 到點(diǎn) B 的距離是 1,那么點(diǎn) C 是(A,B)的幸運(yùn)點(diǎn).
①(B,A)的幸運(yùn)點(diǎn)表示的數(shù)是 ;A.﹣1; B.0; C.1; D.2
②試說明 A 是(C,E)的幸運(yùn)點(diǎn).
(2)如圖 2,M、N 為數(shù)軸上兩點(diǎn),點(diǎn) M 所表示的數(shù)為﹣2,點(diǎn) N 所表示的數(shù)為 4,則(M,N)的幸點(diǎn)示的數(shù)為 .
(拓展應(yīng)用):
(3)如圖 3,A、B 為數(shù)軸上兩點(diǎn),點(diǎn) A 所表示的數(shù)為﹣20,點(diǎn) B 所表示的數(shù)為 40.現(xiàn)有一只電子螞蟻 P 從點(diǎn) B 出發(fā),以 3 個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn) A 停止.當(dāng) t 為何值時(shí),P、A 和 B 三個(gè)點(diǎn)中恰好有一個(gè)點(diǎn)為其余兩點(diǎn)的幸運(yùn)點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為直線AB上一點(diǎn),射線OD、OC、OE位于直線AB上方,OD在OE的左側(cè),∠AOC=120°,∠DOE=α.
(1)如圖1,α=70°,當(dāng)OD平分∠AOC時(shí),求∠EOB的度數(shù).
(2)如圖2,若∠DOC=2∠AOD,且α<80°,求∠EOB的度數(shù)(用含α的代數(shù)式表示);
(3)若α=90°,點(diǎn)F在射線OB上,若射線OF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)n°(0<n<180),∠FOA=2∠AOD,OH平分∠EOC,當(dāng)∠FOH=∠AOC時(shí),求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 所示,用 20 m 的籬笆(細(xì)線部分),兩面靠墻圍成矩形的苗圃.
(1)設(shè)矩形的一邊長為x(m),面積為y(m 2 ),求y關(guān)于x的函數(shù)表達(dá)式;
(2)求當(dāng)x取8、9、10、11、12時(shí)y的值,并觀察這幾種情況下,哪種情況面積最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com