有人說,任何含字母的式子的值,都隨著字母取值的變化而變化;有人說未必如此,還舉了一個(gè)例子,說:不論x、y取任何有理數(shù),多項(xiàng)式(x3+3x2y-2xy2+1)+(-xy2+x2y-2x3+2)+(x3-4x2y+3xy2-8)的值恒等于一個(gè)常數(shù),你認(rèn)為哪種意見正確?請(qǐng)加以說明.

答案:
解析:

  解:原式=x3+3x2y-2xy2+1-xy2+x2y-2x3+2+x3-4x2y+3xy2-8

 �。�(1-2+1)x3+(3+1-4)x2y+(-2-1+3)xy2+(1+2-8)

  =-5

  這個(gè)多項(xiàng)式的值確實(shí)是與x、y的值無關(guān),恒等于-5,可見,后一種意見是正確的.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案