【題目】如圖,已知ABC為等邊三角形,點D,E分別在邊ABAC上,AD=AE,連接DC,點M,P,N分別為DE,DCBC的中點.

1)觀察猜想

在如圖中,線段PMPN的數(shù)量關(guān)系是______,∠MPN的度數(shù)是______

2)探究證明

ADE繞點A逆時針方向旋轉(zhuǎn)到如圖的位置,

①判斷PMN的形狀,并說明理由;

②求∠MPN的度數(shù);

3)拓展延伸

ABC為直角三角形,∠BAC=90°,AB=AC=12,點DE分別在邊AB,AC上,AD=AE=4,連接DC,點M,P,N分別為DE,DC,BC的中點.把ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),如圖.

PMN的是______三角形.

②直接利用①中的結(jié)論,求PMN面積的最大值.

【答案】(1)PM=PN,120°.(2)①△PMN是等腰三角形.證明見解析;②120°.(3)①等腰直角;②32.

【解析】

1)結(jié)論:PM=PN120°.利用三角形的中位線定理即可解決問題;

2)①如圖2中,連接BDEC.證明△BAD≌△CAESAS),可得BD=EC,再利用三角形中位線定理即可解決問題;

②利用三角形的外角以及平行線的性質(zhì)即可解決問題;

3)①由(2)可知:△PMN是等腰直角三角形;

②因為PM=PN=BD,推出BD最大時,PM最大,△PMN面積最大.

1)結(jié)論:PM=PN120°

理由:如圖1中,∵△ABC是等邊三角形,

AB=AC,

AD=AE,

BD=EC,

∵點M,P,N分別為DE,DCBC的中點,

PM=EC,PN=BD,PMAC,PNAB,

PM=PN,∠MPD=ACD,∠PNC=B=60°,

∵∠MPN=MPD+DPN=ACD+DCB+PNC=120°,

故答案為PM=PN,120°;

2)如圖2中,連接BD、EC,

①∵∠BAC=DAE=60°,

∴∠BAD=CAE

BA=CA,DA=EA,

∴△BAD≌△CAESAS),

BD=CE,∠ABD=ACE

∵點M,P,N分別為DE,DC,BC的中點,

PNBD,PMEC,PN=BD,PM=CE,

PN=PM

∴△PMN是等腰三角形;

②∵PNBD,PMEC,

∴∠PNC=DBC,∠DPM=A=ECD,

∴∠MPN=MPD+DPN=ECD+PNC+DCB=ECD+DCB+DBC=ACE+ACD+DCB+DBC=ABD+ACB+DBC=ACB+ABC=120°;

3)①△PMN是等腰直角三角形;

②∵PM=PN=BD

BD最大時,PM最大,△PMN面積最大,

∴點DBA的延長線上,

BD=AB+AD=16,∴PM=8,∴SPMN最大=PM2=×82=32

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年“五一節(jié)”前,某商場用60萬元購進(jìn)某種商品,該商品有甲、乙兩種包裝共500件,其中每件甲包裝中有75個A種產(chǎn)品,每個A產(chǎn)品的成本為12元;每件乙包裝中有100個B產(chǎn)品,每個B種產(chǎn)品的成本為14元.商場將A產(chǎn)品標(biāo)價定為每個18元,B產(chǎn)品標(biāo)價定為每個20元.

(1)甲、乙兩種包裝的產(chǎn)品各有多少件?

(2)“五一節(jié)”商場促銷,將A產(chǎn)品按原定標(biāo)價打9折銷售,B種產(chǎn)品按原定標(biāo)價打8.5折銷售,“五一節(jié)”期間該產(chǎn)品全部賣完,該商場銷售該商品共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,點ECD上,點F、GAB上,且AF=FG=BG=DE=CE。以AB、CD、E、F、G7個點中的三個為頂點的三角形中,面積最小的三角形有_________個,面積最大的三角形有__________個。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某生態(tài)示范村種植基地計劃用90畝~120畝的土地種植一批葡萄,原計劃總產(chǎn)量要達(dá)到36萬斤.

(1)列出原計劃種植畝數(shù)y(畝)與平均每畝產(chǎn)量x(萬斤)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)為了滿足市場需求,現(xiàn)決定改良葡萄品種.改良后平均每畝產(chǎn)量是原計劃的1.5倍,總產(chǎn)量比原計劃增加了9萬斤,種植畝數(shù)減少了20畝,原計劃和改良后的平均每畝產(chǎn)量各是多少萬斤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺的《朗讀者》節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書”,某校對八年級部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本數(shù)量少的有本,最多的有本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如下所示:

本數(shù)(本)

頻數(shù)(人數(shù))

頻率

合計

)統(tǒng)計圖表中的__________,__________,__________.

)請將頻數(shù)分布直方圖補(bǔ)充完整.

求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù).

)若該校八年級共有名學(xué)生,請你估計該校八年級學(xué)生課外閱讀本及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

(3)求彈珠離開軌道時的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD,ABCD,點EBC延長線上一點,連接AC、AEAECD于點F,∠1=2,∠3=4

證明:

1)∠BAE=DAC;

2)∠3=BAE;

3ADBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(10,0),B(4,8),C(0,8),連接AB,BC,點Px軸上,從原點O出發(fā),以每秒1個單位長度的速度向點A運(yùn)動,同時點M從點A出發(fā),以每秒2個單位長度的速度沿折線A﹣B﹣C向點C運(yùn)動,其中一點到達(dá)終點時,另一點也隨之停止運(yùn)動,設(shè)P,M兩點運(yùn)動的時間為t秒.

(1)求AB長;

(2)設(shè)PAM的面積為S,當(dāng)0≤t≤5時,求St的函數(shù)關(guān)系式,并指出S取最大值時,點P的位置;

(3)t為何值時,APM為直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)公益組織計劃購買兩種的文具套裝進(jìn)行捐贈,關(guān)注留守兒童經(jīng)洽談,購買套裝比購買套裝多用20元,且購買5套裝和4套裝共需820元.

(1)求購買一套套裝文具、一套套裝各需要多少元?

(2)根據(jù)該公益組織的募捐情況和捐助對象情況,需購買兩種套裝共60套,要求購買兩種套裝的總費(fèi)用不超過5240元,則購買套裝最多多少套?

查看答案和解析>>

同步練習(xí)冊答案