如圖,甲、乙兩個可以自由轉(zhuǎn)動的均勻的轉(zhuǎn)盤,甲轉(zhuǎn)盤被分成3個面積相等
的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應(yīng)的數(shù)字,同時轉(zhuǎn)
動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為m,乙轉(zhuǎn)盤中指針
所指區(qū)域內(nèi)的數(shù)字為n(若指針指在邊界線上時,重轉(zhuǎn)一次,直到指針都指向一個區(qū)
域為止).
1.請你用畫樹狀圖或列表格的方法求出|m+n|>1的概率
2.直接寫出點(m,n)落在函數(shù)y=- 圖象上的概率
1.表格如下:
轉(zhuǎn)盤乙 |
|
|
|
|
轉(zhuǎn)盤甲 | -1 | 0 | 1 | 2 |
-1 | (-1,-1) | (-1,0) | (-1,1) | (-1,2) |
- | (-,-1) | (-,0) | (-,1) | (-,2) |
1 | (1,-1) | (1,0) | (1,1) | (1,2) |
(4分)
由表格可知,所有等可能的結(jié)果有12種,其中|m+n|>1的情況有5種,(5分)
所以|m+n|>1的概率為P1=;(6分)
2.點(m,n)在函數(shù)y=-上的概率為P2=.(8分)
解析:(1)根據(jù)題意列表,然后根據(jù)列表求得所有可能的結(jié)果與|m+n|>1的情況,根據(jù)概率公式求解即可.
(2)根據(jù)(1)中的樹狀圖,即可求得點(m,n)落在函數(shù)y=-圖象上的情況,由概率公式即可求得答案.
科目:初中數(shù)學(xué) 來源: 題型:
1 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
)如圖,甲、乙兩個可以自由轉(zhuǎn)動的均勻的轉(zhuǎn)盤,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應(yīng)的數(shù)字,同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為m,乙轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為n(若指針指在邊界線上時,重轉(zhuǎn)一次,直到指針都指向一個區(qū)域為止).
1.請你用畫樹狀圖或列表格的方法求出|m+n|>1的概率;
2.直接寫出點(m,n)落在函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧大石橋市九年級中考模擬(四)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,甲、乙兩個可以自由轉(zhuǎn)動的均勻的轉(zhuǎn)盤,甲轉(zhuǎn)盤被分成3個面積相等
的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應(yīng)的數(shù)字,同時轉(zhuǎn)
動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為m,乙轉(zhuǎn)盤中指針
所指區(qū)域內(nèi)的數(shù)字為n(若指針指在邊界線上時,重轉(zhuǎn)一次,直到指針都指向一個區(qū)
域為止).
1.請你用畫樹狀圖或列表格的方法求出|m+n|>1的概率
2.直接寫出點(m,n)落在函數(shù)y=- 圖象上的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市九年級第一次中考模擬考試數(shù)學(xué)卷 題型:選擇題
(本題滿分8分)如圖,甲、乙兩個可以自由轉(zhuǎn)動的均勻的轉(zhuǎn)盤,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應(yīng)的數(shù)字,同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為m,乙轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為n(若指針指在邊界線上時,重轉(zhuǎn)一次,直到指針都指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法求出|m+n|>1的概率;
(2)直接寫出點(m,n)落在函數(shù)圖象上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com