【題目】如圖,點(diǎn)B、C把 分成三等分,ED是⊙O的切線,過點(diǎn)B、C分別作半徑的垂線段,已知∠E=45°,半徑OD=1,則圖中陰影部分的面積是

【答案】
【解析】解:∵點(diǎn)B、C把 分成三等分,ED是⊙O的切線,∠E=45°,
∴∠ODE=90°,∠DOC=45°,
∴∠BOA=∠BOC=∠COD=45°,
∵OD=1,
∴陰影部分的面積是: + = ,
所以答案是:
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識(shí),掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑,以及對(duì)扇形面積計(jì)算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐵路上、兩點(diǎn)相距25km,為良村莊,,已知,,現(xiàn)在要在鐵路上修建一個(gè)土特產(chǎn)收購(gòu)站

(1)在圖中,若,則戰(zhàn)應(yīng)修建在離站多少千米處.

(2)在圖中,若值最小,則點(diǎn)應(yīng)建在哪里,請(qǐng)求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD為∠BAC的平分線,DEABE,DFACF,

(1)證明AE=AF;

(2)若ABC面積是36cm2,AB=10cm,AC=8cm,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,將△ABC進(jìn)行位似變換得到△A1B1C1

(1)△A1B1C1與△ABC的位似比是
(2)畫出△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2;
(3)設(shè)點(diǎn)P(a,b)為△ABC內(nèi)一點(diǎn),則依上述兩次變換后,點(diǎn)P在△A2B2C2內(nèi)的對(duì)應(yīng)點(diǎn)P2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=3,BC=4,AC=2,D、E、F分別為AB、BC、AC中點(diǎn),連接DF、FE,則四邊形DBEF的周長(zhǎng)是(

A.5
B.7
C.9
D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、EBC上,連接AD、AE,如果只添加一個(gè)條件使∠DAB=∠EAC,則添加的條件不能為( )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高身體素質(zhì),有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費(fèi)方式如下:
普通消費(fèi):35元/次;
白金卡消費(fèi):購(gòu)卡280元/張,憑卡免費(fèi)消費(fèi)10次再送2次;
鉆石卡消費(fèi):購(gòu)卡560元/張,憑卡每次消費(fèi)不再收費(fèi).
以上消費(fèi)卡使用年限均為一年,每位顧客只能購(gòu)買一張卡,且只限本人使用.
(1)李叔叔每年去該健身中心健身6次,他應(yīng)選擇哪種消費(fèi)方式更合算?
(2)設(shè)一年內(nèi)去該健身中心健身x次(x為正整數(shù)),所需總費(fèi)用為y元,請(qǐng)分別寫出選擇普通消費(fèi)和白金卡消費(fèi)的y與x的函數(shù)關(guān)系式;
(3)王阿姨每年去該健身中心健身至少18次,請(qǐng)通過計(jì)算幫助王阿姨選擇最合算的消費(fèi)方式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB=9,AD=4.E為CD邊上一點(diǎn),CE=6. 點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿著邊BA向終點(diǎn)A運(yùn)動(dòng),連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),△PAE為直角三角形?

(2)是否存在這樣的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M、N分別是正方形ABCD邊DC、AB的中點(diǎn),分別以AE、BF為折痕,使點(diǎn)D、點(diǎn)C落在MN的點(diǎn)G處,則△ABG是 三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案