某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學校每天需付給甲隊的綠化費用為0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?
(1)甲、乙兩工程隊每天能完成綠化的面積分別是100m2、50m2;
(2)至少應(yīng)安排甲隊工作10天.

試題分析:(1)等量關(guān)系是:甲獨立完成面積為400 m2區(qū)域的綠化用時-乙獨立完成面積為400 m2區(qū)域的綠化用時=4,由等量關(guān)系列出方程,求解,檢驗即可
(2)不等關(guān)系是:甲的費用+乙的費用≤8,根據(jù)題意列出不等式,求解即可
試題解析:(1)設(shè)乙工程隊每天能完成綠化的面積是xm2,根據(jù)題意得:=4,
解得:x=50經(jīng)檢驗x=50是原方程的解,
則甲工程隊每天能完成綠化的面積是50×2=100(m2),
答:甲、乙兩工程隊每天能完成綠化的面積分別是100m2、50m2
(2)設(shè)至少應(yīng)安排甲隊工作x天,根據(jù)題意得:
0.4x+×0.25≤8,解得:x≥10,
答:至少應(yīng)安排甲隊工作10天.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

解分式方程 .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有兩塊面積相同的蔬菜試驗田,第一塊使用原品種,第二塊使用新品種,分別收獲蔬菜1500千克和2100千克.已知第二塊試驗田每畝的產(chǎn)量比第一塊多200千克.若設(shè)第一塊試驗田每畝的產(chǎn)量為x千克,則根據(jù)題意列出的方程是                      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

列方程(組)解應(yīng)用題:
某校甲、乙給貧困地區(qū)捐款購買圖書,每班捐款總數(shù)均為1200元,已知甲班比乙班多8人,乙班人均
捐款是甲班人均捐款的倍,求:甲、乙兩班各有多少名學生.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

計算:
(1)
3b2
4a2
•(-
a
6b
)
;
(2)(9-x2
x2-3x
x

(3)(
a3
-2b
)÷(-
a2
b
)3•(
b
2
)2
;
(4)(
x2-y2
xy
)2÷(x+y)2•(
x
x-y
)3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

式子“1+2+3+4+5+…+100”表示從1開始的100個連續(xù)自然數(shù)的和,由于上述式子比較長,書寫也不方便,為了簡便起見,我們可以將“1+2+3+4+5+…+100”表示為
100
n=1
n
,這里的符號“”是求和的符號,如“1+3+5+7+…+99”即從1開始的100以內(nèi)的連續(xù)奇數(shù)的和,可表示為
50
n=1
(2n-1)
.通過對以上材料的閱讀,請計算:
2013
n=1
1
n(n+1)
=______(填寫最后的計算結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列方程中,是分式方程的個數(shù)是( 。
x+1
3
=1
,②
3
x+1
=4
,③
x2-1
x+1
=1
,④
x
2
+
x-1
3
=2
,⑤
x+1
π
+2=x
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某廠接到加工720件衣服的訂單,預計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設(shè)每天應(yīng)多做x件,則x應(yīng)滿足的方程為
A.B.
C.D.=5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若關(guān)于x的分式方程的解是負數(shù),則m的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案