如圖,∠1=∠2,AC=AD,∠C=∠D,若AB=4cm,BC=3cm,AC=2cm,則DE的長是( 。
分析:由∠1=∠2可以得出∠BAC=∠EAD,再證明△BAC≌△EAD就可以得出結論.
解答:解:∵∠1=∠2,
∴∠1+∠EAB=∠2+∠EAB,
即∠BAC=∠EAD.
在△BAC和△EAD中
∠C=∠D
AC=AD
∠BAC=∠EAD

∴△BAC≌△EAD(ASA),
∴BC=ED.
∵BC=3cm,
∴DE=3cm.
故選B.
點評:本題考查了等式的性質的運用,全等三角形的判定及性質的運用,解答時證明三角形全等是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案