如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:
(1)設(shè)△APQ的面積為S,當t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當四邊形PQP′C為菱形時,求t的值;′
(3)當t為何值時,△APQ是等腰三角形?

 

(1)當t為秒時,S最大值為cm2;
當四邊形PQP′C為菱形時,t的值是s;
當t為s或s或s時,△APQ是等腰三角形.

解析試題分析:
(1)過點P作PH⊥AC于H,由△APH∽△ABC,得出=,從而求出AB,再根據(jù)=,得出PH=3﹣t,則△AQP的面積為:AQ•PH=t(3﹣t),最后進行整理即可得出答案;
(2)連接PP′交QC于E,當四邊形PQP′C為菱形時,得出△APE∽△ABC,=,求出AE=﹣t+4,再根據(jù)QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可;
(3)由(1)知,PD=﹣t+3,與(2)同理得:QD=﹣t+4,從而求出PQ=,
在△APQ中,分三種情況討論:①當AQ=AP,即t=5﹣t,②當PQ=AQ,即=t,③當PQ=AP,即=5﹣t,再分別計算即可
試題解析:
解:(1)如圖甲,過點P作PH⊥AC于H,
∵∠C=90°,
∴AC⊥BC,
∴PH∥BC,
∴△APH∽△ABC,
=,
∵AC=4cm,BC=3cm,
∴AB=5cm,
=,
∴PH=3﹣t,
∴△AQP的面積為:
S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+
∴當t為秒時,S最大值為cm2.
(2)如圖乙,連接PP′,PP′交QC于E,
當四邊形PQP′C為菱形時,PE垂直平分QC,即PE⊥AC,QE=EC,
∴△APE∽△ABC,
=,
∴AE===﹣t+4
QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,
QE=QC=(4﹣t)=﹣t+2,
∴﹣t+4=﹣t+2,
解得:t=,
∵0<<4,
∴當四邊形PQP′C為菱形時,t的值是s;
(3)由(1)知,
PD=﹣t+3,與(2)同理得:QD=AD﹣AQ=﹣t+4
∴PQ===
在△APQ中,
①當AQ=AP,即t=5﹣t時,解得:t1=;
②當PQ=AQ,即=t時,解得:t2=,t3=5;
③當PQ=AP,即=5﹣t時,解得:t4=0,t5=;
∵0<t<4,
∴t3=5,t4=0不合題意,舍去,
∴當t為s或s或s時,△APQ是等腰三角形.


考點:相似形綜合題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:填空題

如下圖,n+1個腰長為2的等腰直角三角形斜邊在同一直線上,設(shè)△B2D1C1(陰影部分)的面積為S1,△B3D2C2的面積為S2,…,△Bn+1DnCn的面積為Sn,則S2=__________;Sn=__________.(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,在長為8,寬為4的矩形中,截去一個矩形,使得留下的矩形(圖中陰影部分)與原矩形相似,則留下矩形的面積是         .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可繞點B旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過程中直線CC′和AA′相交于點D.
(1)如圖1所示,當點C′在AB邊上時,判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)將Rt△A′BC′由圖1的位置旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)將Rt△A′BC′由圖1的位置按順時針方向旋轉(zhuǎn)α角(0°≤α≤120°),當A、C′、A′三點在一條直線上時,請直接寫出旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,方格紙中有一條美麗可愛的小金魚.
(1)在同一方格紙中,畫出將小金魚圖案繞原點O旋轉(zhuǎn)180°后得到的圖案;
(2)在同一方格紙中,并在軸的右側(cè),將原小金魚圖案原點O為位似中心放大,使它們的位似比為1:2,畫出放大后小金魚的圖案.

y

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,連接OD,過點D作⊙O的切線,交AB延長線于點E,交AC于點F.
(1)求證:OD∥AC;
(2)當AB=10,時,求AF及BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,AB=4,AC=3,D、E分別是AB、AC上的動點,在邊AC上取一點E,使A、D、E三點組成的三角形與△ABC相似.
(1)當AD=2時,求AE的長;
(2)當AD=3時,求AE的長;
(3)通過上面兩題的解答,你發(fā)現(xiàn)了什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;
(2)若EG·BG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在△ABC中,AB=AC,∠A=36°,∠ABC的平分線交AC于D,

(1)求證:△ABC∽△BCD;
(2)若BC=2,求AB的長。

查看答案和解析>>

同步練習冊答案