已知:⊙O的直徑AB和弦CD,且AB⊥CD于E,F(xiàn)為DC延長(zhǎng)線上一點(diǎn),連接AF交⊙O于M.求證:∠AMD=∠FMC.
分析:連接AD,根據(jù)垂徑定理求出弧AD=弧AC,根據(jù)圓周角定理求出∠AMD=∠ADC,根據(jù)四點(diǎn)共圓求出∠FMC=∠ADC,即可推出答案.
解答:證明:連接AD,
∵⊙O的直徑AB和弦CD,且AB⊥CD,
∴弧AC=弧AD,
∴∠AMD=∠ADC,
∵A、M、C、D四點(diǎn)共圓,
∴∠FMC=∠ADC(圓內(nèi)接四邊形的一個(gè)外角等于它的內(nèi)對(duì)角),
∴∠AMD=∠FMC.
點(diǎn)評(píng):本題考查了垂徑定理,圓周角定理,圓內(nèi)接四邊形的性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是作輔助線得出∠ADC=∠AMC,通過(guò)做此題培養(yǎng)了學(xué)生運(yùn)用定理進(jìn)行推理的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知半圓O的直徑AB=10,⊙O1與半圓O內(nèi)切干點(diǎn)C,與AB相切干點(diǎn)D,
(1)求證:CD平分∠ACB;
(2)若AC:CB=1:3,求△CDB的面積S△CDB
(3)設(shè)AC:CB=x(x>0),⊙O1的半徑為y,請(qǐng)用含x的代數(shù)式表示y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知半圓O的直徑AB=6,點(diǎn)C、D是半圓的兩個(gè)三等份點(diǎn),則弦BC、BD和弧
CD
圍成的圖形的面積為
 
.(結(jié)果可含有π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知圓O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長(zhǎng)交AD于點(diǎn)F,且CF⊥AD.
(1)請(qǐng)證明:E是OB的中點(diǎn);
(2)若AB=8,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:⊙O的直徑AB與弦AC的夾角∠A=30°,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P.
(1)求證:AC=CP;
(2)⊙O的直徑是6,以點(diǎn)B為圓心作圓,當(dāng)半徑為多長(zhǎng)時(shí),AC與⊙B相切?
(3)若PC=6,求圖中陰影部分的面積(結(jié)果精確到0.1,
3
=1.732

查看答案和解析>>

同步練習(xí)冊(cè)答案