【題目】如圖,在等腰直角ABC中,AB=AC,點D是斜邊BC的中點,點E、F分別是AB、AC邊上的點,且DEDF.

1)證明:BE+CF=EF2;

2)若BE=12,CF=5,求DEF的面積.

【答案】1)見解析;(2

【解析】

1)連接AD,首先利用等腰直角三角形的性質(zhì)得到ADBC,AD=CD=BD,∠C=DAE,得出∠CDF=ADE,然后利用ASA證得DCF≌△ADE,得出CF=AE,DF=DE,得出BE=AF,再根據(jù)勾股定理即可得出結(jié)論;

2)由(1)知:AE=CF,AF=BCDE=DF,即EDF為等腰直角三角形,在RtAEF中,運用勾股定理求出EF,進而求出DEDF的值,代入SEDF=DE2進行求解即可.

(1)證明:連接AD,如圖所示:

AB=AC,DBC的中點,BAC=90°

ADBC,AD=CD=BD,C=B=45°,DAE=45°,

DEDF,

∴∠CDF+ADF=EDA+ADF,

即∠CDF=ADE,

DCFADE,,

∴△DCF≌△ADE(ASA),

CF=AE,DF=DE,

BE=AF,

AF2+AE2=EF2

BE2+CF2=EF2;

(2)(1)知:AE=CF=5,同理AF=BE=12,

∵∠EAF=90°,

EF2=AE2+AF2=52+122=169

EF=13

又∵由(1)知:AED≌△CFD,

DE=DF,

∴△DEF為等腰直角三角形,

DE=DF=EF

∴△DEF的面積=DE2= .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張華發(fā)現(xiàn)某月的日歷中一個有趣的問題,他用筆在上面畫如圖所示的十字框,若設(shè)任意一個十字框里的五個數(shù)為a、b、c、d、k.設(shè)中間的一個數(shù)為k,如圖:試回答下列問題:

(1)此日歷中能畫出   個十字框?

(2)若a+b+c+d=84,求k的值;

(3)是否存在k的值,使得a+b+c+d=108,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,已知 中,AB=BC,,點 為斜邊 的中點,連接 AF 的平分線,分別與 BD、 相交于點 E、F

(1)求證:;

(2)如圖,連接 ,在不添加任何輔助線的條件下,直接寫出圖中所有的等腰三角形(不包含).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)工會開展一周工作量完成情況調(diào)查活動,隨機調(diào)查了部分員工一周的工作量剩余情況,并將調(diào)查結(jié)果統(tǒng)計后繪制成如圖1和圖2所示的不完整統(tǒng)計圖.

(1)被調(diào)查員工人數(shù)為   人:

(2)把條形統(tǒng)計圖補充完整;

(3)若該企業(yè)有員工10000人,請估計該企業(yè)某周的工作量完成情況為剩少量的員工有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句:11的平方根。帶根號的數(shù)都是無理數(shù)。1的立方根是-1。的立方根是2。⑤(2)2的算術(shù)平方根是2。125的立方根是±5。有理數(shù)和數(shù)軸上的點一一對應(yīng)。其中正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,AC=5,DAB=DCB=90°,則四邊形ABCD的面積為( 。

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

小紅同學(xué)在學(xué)習(xí)過程中遇到這樣一道計算題“計算”,他覺得太麻煩,估計應(yīng)該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!

獲取新知:

請你和小紅一起完成崔老師提供的問題:

1)填寫下表:

2)觀察表格,你發(fā)現(xiàn)有什么數(shù)量關(guān)系?請直接寫出之間的數(shù)量關(guān)系.

解決問題:

3)請結(jié)合上述的有關(guān)信息,計算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,ACB=,∠B=AC=1,BC=,AB=2,AC在直線l上,將ABC繞點A順時針轉(zhuǎn)到位置①可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=2+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=3+,按此順序繼續(xù)旋轉(zhuǎn),得到點P2016,則AP2016=( )

A. 2016+671B. 2016+672

C. 2017+671D. 2017+672

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.

(1)求拋物線的解析式;

(2)當(dāng)點P運動到什么位置時,△PAB的面積有最大值?

(3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案