【題目】2016年某園林綠化公司購(gòu)回一批香樟樹(shù),全部售出后利潤(rùn)率為20%.
(1)求 2016年每棵香樟樹(shù)的售價(jià)與成本的比值.
(2)2017年,該公司購(gòu)入香樟樹(shù)數(shù)量增加的百分?jǐn)?shù)與每棵香樟樹(shù)成本降低的百分?jǐn)?shù)均為a,經(jīng)測(cè)算,若每棵香樟樹(shù)售價(jià)不變,則總成本將比2016年的總成本減少8萬(wàn)元;若每棵香樟樹(shù)售價(jià)提高百分?jǐn)?shù)也為a,則銷售這批香樟樹(shù)的利潤(rùn)率將達(dá)到4a.求a的值及相應(yīng)的2017年購(gòu)買香樟樹(shù)的總成本.
【答案】(1)每棵樹(shù)的售價(jià)與投入成本的比值為1.2;(3)當(dāng) a=時(shí),mx=128;2017年總投入成本為120(萬(wàn)元),當(dāng) a=時(shí),mx=200;2017年總投入成本為192(萬(wàn)元).
【解析】
(1)設(shè) 2016 年每棵樹(shù)的投入成本為 x 萬(wàn)元,則每棵樹(shù)的售價(jià)=x(1+20%) 萬(wàn)元,每棵樹(shù)的售價(jià)與投入成本的比值=1.2;
(2)設(shè) 2016 年購(gòu)入香樟樹(shù)數(shù)量的數(shù)量為 m 棵,每棵樹(shù)投入成本為 x 萬(wàn)元,則每棵樹(shù)的售價(jià)=x(1+20%)萬(wàn)元,總成本為 mx 萬(wàn)元;2017 年購(gòu)入香樟樹(shù)數(shù)量的數(shù)量為 m(1+a)棵,每棵樹(shù)投入成本為 x(1﹣a)萬(wàn)元,每棵樹(shù)的售價(jià)=x(1+20%)萬(wàn)元,總成本為 mx(1+a)(1﹣a)萬(wàn)元,進(jìn)而利用 2017 年總成本將比 2016 年的總成本減少 8 萬(wàn)元得出等式求出即可.
(1)設(shè) 2016 年每棵樹(shù)的投入成本為 x 萬(wàn)元,則每棵樹(shù)的售價(jià)=x(1+20%)萬(wàn)元,
每棵樹(shù)的售價(jià)與投入成本的比值=1.2x:x=1.2.
或者,∵=20%,
∴﹣1=0.2,
∴=1.2;
(2)設(shè)2016年購(gòu)入香樟樹(shù)數(shù)量的數(shù)量為m棵,
每棵樹(shù)投入成本為 x萬(wàn)元,則每棵樹(shù)的售價(jià)=x(1+20%)萬(wàn)元,總成本為 mx萬(wàn)元;
2017 年購(gòu)入香樟樹(shù)數(shù)量的數(shù)量為 m(1+a)棵,每棵樹(shù)投入成本為 x(1﹣a)萬(wàn)元,每棵樹(shù)的售價(jià)=x(1+20%)萬(wàn)元,總成本為 mx(1+a)(1﹣a)萬(wàn)元.
依題意,mx﹣mx(1+a)(1﹣a)=8①,
x(1+20%)(1+a)=x(1﹣a)(1+4a)②,
整理①式得,mxa2=8,
整理②式得,20a2﹣9a+1=0,
解得 a=或 a=.
將 a 的值分別代入 mxa2=8,
當(dāng) a=時(shí),mx=128;2017 年總投入成本=mx﹣8=128﹣8=120(萬(wàn)元),當(dāng) a=時(shí),mx=200; 2017 年總投入成本=mx﹣8=200﹣8=192 (萬(wàn)元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出“遼陽(yáng)—葫蘆島海濱觀光一日游”項(xiàng)目,團(tuán)隊(duì)人均報(bào)名費(fèi)用y(元)與團(tuán)隊(duì)報(bào)名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88元.旅行社收到的團(tuán)隊(duì)總報(bào)名費(fèi)用為w(元).
(1)直接寫出當(dāng)x≥20時(shí),y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)兒童節(jié)當(dāng)天旅行社收到某個(gè)團(tuán)隊(duì)的總報(bào)名費(fèi)為3000元,報(bào)名旅游的人數(shù)是多少?
(3)當(dāng)一個(gè)團(tuán)隊(duì)有多少人報(bào)名時(shí),旅行社收到的總報(bào)名費(fèi)最多?最多總報(bào)名費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個(gè)數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原點(diǎn)O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.
(1)求點(diǎn)B的坐標(biāo).
(2)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,∠ABQ的大小是否發(fā)生改變?若不改變,求出其大小;若改變,請(qǐng)說(shuō)明理由.
(3)連接OQ,當(dāng)OQ∥AB時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線AC上,且AE=CF.求證:
(1)DE=BF;
(2)四邊形DEBF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,直線:分別與軸、軸交于點(diǎn)、,且與直線:交于點(diǎn),以線段為邊在直線的下方作正方形,此時(shí)點(diǎn)恰好落在軸上.
(1)求出三點(diǎn)的坐標(biāo).
(2)求直線的函數(shù)表達(dá)式.
(3)在(2)的條件下,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),在平面內(nèi)是否存在點(diǎn),使得以、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用若干個(gè)小立方塊搭成一個(gè)幾何體,使它從正面看與從左面看都是如圖的同一個(gè)圖.通過(guò)實(shí)際操作,并與同學(xué)們討論,解決下列問(wèn)題:
(1)所需要的小立方塊的個(gè)數(shù)是多少?你能找出幾種?
(2)畫出所需個(gè)數(shù)最少和所需個(gè)數(shù)最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市促銷活動(dòng),將三種水果采用甲、乙、丙三種方式搭配裝進(jìn)禮盒進(jìn)行銷售.每盒的總成本為盒中三種水果成本之和,盒子成本忽略不計(jì).甲種方式每盒分別裝三種水果;乙種方式每盒分別裝三種水果 .甲每盒的總成本是每千克 水果成本的倍,每盒甲的銷售利潤(rùn)率為;每盒甲比每盒乙的售價(jià)低;每盒丙在成本上提高標(biāo)價(jià)后打八折出售,獲利為每千克 水果成本的倍.當(dāng)銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為時(shí),則銷售總利潤(rùn)率為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com