如圖,拋物線y=ax2 + bx + c 交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,對(duì)稱軸為直線x=1,已知:A(-1,0)、C(0,-3)。
(1)求拋物線y= ax2 + bx + c 的解析式;
(2)求△AOC和△BOC的面積比;
(3)在對(duì)稱軸上是否存在一個(gè)P點(diǎn),使△PAC的周長最小。若存在,請(qǐng)你求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)你說明理由。
(1)y=x2-2x-3.(2)1:3;(3)存在,(1,-2).
解析試題分析:(1)根據(jù)拋物線的對(duì)稱軸即可得出點(diǎn)B的坐標(biāo),然后將A、B、C三點(diǎn)坐標(biāo)代入拋物線中即可求得二次函數(shù)的解析式.
(2)由于兩三角形等高,那么面積比就等于底邊的比,據(jù)此求解即可.
(3)本題的關(guān)鍵是確定P點(diǎn)的位置,根據(jù)軸對(duì)稱圖形的性質(zhì)和兩點(diǎn)間線段最短,可找出C點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),然后連接此點(diǎn)和A,那么這條直線與拋物線對(duì)稱軸的交點(diǎn)就是所求的P點(diǎn).可先求出這條直線的解析式然后聯(lián)立拋物線對(duì)稱軸的解析式即可求得P點(diǎn)坐標(biāo).
試題解析::(1)∵A,B兩點(diǎn)關(guān)于x=1對(duì)稱,
∴B點(diǎn)坐標(biāo)為(3,0),
根據(jù)題意得:
,
解得a=1,b=-2,c=-3.
∴拋物線的解析式為y=x2-2x-3.
(2)△AOC和△BOC的面積分別為S△AOC="1" 2 |OA|•|OC|,S△BOC="1" 2 |OB|•|OC|,
而|OA|=1,|OB|=3,
∴S△AOC:S△BOC=|OA|:|OB|=1:3.
(3)存在一個(gè)點(diǎn)P.C點(diǎn)關(guān)于x=1對(duì)稱點(diǎn)坐標(biāo)C'為(2,-3),
令直線AC'的解析式為y=kx+b
∴,
∴k=-1,b=-1,即AC'的解析式為y=-x-1.
為x=1時(shí),y=-2,
∴P點(diǎn)坐標(biāo)為(1,-2).
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,對(duì)稱軸為直線l:,該拋物線與x軸的另一個(gè)交點(diǎn)為B.
(1)求此拋物線的解析式;
(2)點(diǎn)P在直線l上,求出使△PAC的周長最小的點(diǎn)P的坐標(biāo);
(3)點(diǎn)M在此拋物線上,點(diǎn)N在y軸上,以A、B、M、N為頂點(diǎn)的四邊形能否為平行四邊形?若能,直接寫出所有滿足要求的點(diǎn)M的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)的坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo).
(3)該二次函數(shù)的對(duì)稱軸交x軸于C點(diǎn).連接BC,并延長BC交拋物線于E點(diǎn),連接BD,DE,求△BDE的面積.
(4)拋物線上有一個(gè)動(dòng)點(diǎn)P,與A,D兩點(diǎn)構(gòu)成△ADP,是否存在S△ADP=S△BCD?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在.請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))點(diǎn)
A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.
(1)請(qǐng)直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請(qǐng)求出該二次函數(shù)表達(dá)式及對(duì)稱軸和頂點(diǎn)坐標(biāo).
(3)如圖1,在二次函數(shù)對(duì)稱軸上是否存在點(diǎn)P,使△APC的周長最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(4)如圖2,連接AC、BC,點(diǎn)Q是線段0B上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過點(diǎn)Q作QD∥AC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(1,0)、C,交y軸于點(diǎn)B,對(duì)稱軸x=-1與x軸交于點(diǎn)D.
(1)求該拋物線的解析式和B、C點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P(x,y)是第二象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PBD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)點(diǎn)G在x軸負(fù)半軸上,且∠GAB=∠GBA,求G的坐標(biāo);
(4)若此拋物線上有一點(diǎn)Q,滿足∠QCA=∠ABO,若存在,求直線QC的解析式;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y=x2+bx+c過點(diǎn)(-6,-2),與y軸交于點(diǎn)C,且對(duì)稱軸與x軸交于點(diǎn)B(-2,0),頂點(diǎn)為A.
(1)求該拋物線的解析式和A點(diǎn)坐標(biāo);
(2)若點(diǎn)D是該拋物線上的一個(gè)動(dòng)點(diǎn),且使△DBC是以B為直角頂點(diǎn)BC為腰的等腰直角三角形,求點(diǎn)D坐標(biāo);
(3)若點(diǎn)M是第二象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),經(jīng)過點(diǎn)M的直線MN與y軸交于點(diǎn)N,是否存在以O(shè)、M、N為頂點(diǎn)的三角形與△OMB全等?若存在,請(qǐng)求出直線MN的解析式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形OABC在平面直角坐標(biāo)系xoy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O、A兩點(diǎn),直線AC交拋物線于點(diǎn)D。
(1)求拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以點(diǎn)A、D、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,在等腰△ABC中,底邊BC=8,高AD=2,一動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BC向右運(yùn)動(dòng),到達(dá)D點(diǎn)停止;另一動(dòng)點(diǎn)P從距離B點(diǎn)1個(gè)單位的位置出發(fā),以相同的速度沿BC向右運(yùn)動(dòng),到達(dá)DC中點(diǎn)停止;已知P、Q同時(shí)出發(fā),以PQ為邊作正方形PQMN,使正方形PQMN和△ABC在BC的同側(cè),設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)當(dāng)點(diǎn)N落在AB邊上時(shí),t的值為 ,當(dāng)點(diǎn)N落在AC邊上時(shí),t的值為 ;
(2)設(shè)正方形PQMN與△ABC重疊部分面積為S,求出當(dāng)重疊部分為五邊形時(shí)S與t的函數(shù)關(guān)系式以及t的取值范圍;
(3)(本小題選做題,做對(duì)得5分,但全卷不超過150分)
如圖2,分別取AB、AC的中點(diǎn)E、F,連接ED、FD,當(dāng)點(diǎn)P、Q開始運(yùn)動(dòng)時(shí),點(diǎn)G從BE中點(diǎn)出發(fā),以每秒 個(gè)單位的速度沿折線BE-ED-DF向F點(diǎn)運(yùn)動(dòng),到達(dá)F點(diǎn)停止運(yùn)動(dòng).請(qǐng)問在點(diǎn)P的整個(gè)運(yùn)動(dòng)過程中,點(diǎn)G可能與PN邊的中點(diǎn)重合嗎?如果可能,請(qǐng)直接寫出t的值或取值范圍;若不可能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:二次函數(shù)中的滿足下表:
…… | 0 | 1 | 2 | 3 | …… | ||
…… | 0 | …… |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com