【題目】已知一個(gè)多邊形內(nèi)角和是它的外角和的5倍,求這個(gè)多邊形的邊數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面四根木棒中,選一根能與長為4cm,9cm的兩根木棒首尾依次相接釘成一個(gè)三角形的是( )
A.4cm
B.5cm
C.9cm
D.13cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,P是CD邊上的動點(diǎn)(P點(diǎn)不與C、D重合),過點(diǎn)P作直線與BC的延長線交于點(diǎn)E,與AD交于點(diǎn)F,且CP=CE,連接DE、BP、BF,設(shè)CP═x,△PBF的面積為S1 , △PDE的面積為S2 .
(1)求證:BP⊥DE.
(2)求S1﹣S2關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.
(3)分別求當(dāng)∠PBF=30°和∠PBF=45°時(shí),S1﹣S2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把能平分四邊形面積的直線稱為“好線”.利用下面的作圖,可以得到四邊形的“好線”:如圖1四邊形ABCD中,取對角線BD的中點(diǎn)O,連接OA,OC,顯然,折線AOC能平分四邊形ABCD的面積,再過點(diǎn)O作OE∥AC交CD于E,則直線AE即為一條“好線”.
(1)如圖1,試說明直線AE是“好線”的理由;
(2)如圖2,AE為一條“好線”,F(xiàn)為AD邊上的一點(diǎn),請作出經(jīng)過F點(diǎn)的“好線”,并說明理由;
(3)如圖3,五邊形ABCDE是一塊土地的示意圖,經(jīng)過多年開墾荒地,現(xiàn)已變成如圖3所示的形狀,但原塊土地與開墾荒地的分界小路(折線CDE)還保留著,現(xiàn)在請你過E點(diǎn)修一條直路.要求直路左邊的土地面積與原來一樣多(只需對作圖適當(dāng)說明無需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算75°23′12″﹣46°53′43″=( )
A. 28°70′69″B. 28°30′29″C. 29°30′29″D. 28°29′29″
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)B作BM⊥x軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F。
(1)求證:CE=CF。
(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點(diǎn)E′落在BC邊上,其它條件不變,如圖(2)所示。試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com