【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線(xiàn)交⊙O于點(diǎn)D,過(guò)點(diǎn)DDEACAC的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BD

1)求證:DE是⊙O的切線(xiàn);

2)若BD3AD4,則DE

【答案】1)見(jiàn)解析;(2

【解析】

1)連接OD,如圖,先證明ODAE,再利用DEAE得到ODDE,然后根據(jù)切線(xiàn)的判定定理得到結(jié)論;

2)證明△ABD∽△ADE,通過(guò)線(xiàn)段比例關(guān)系求出DE的長(zhǎng).

1)證明:連接OD

AD平分∠BAC

∴∠BAD=∠DAC

OAOD

∴∠BAD=∠ODA

∴∠ODA=∠DAC

ODAE

∴∠ODE+∠E180°

DEAE

∴∠E90°

∴∠ODE180°-∠E180°90°90°,即ODDE

∵點(diǎn)D在⊙O

DE是⊙O的切線(xiàn).

2)∵AB是⊙O的直徑,

∴∠ADB=90°,

AD平分∠BAC,

∴∠BAD=DAE

在△ABD和△ADE中,

,

∴△ABD∽△ADE

,

BD3,AD4AB==5

DE==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,AB6,∠B75°,將△ABC沿AC邊折疊得到△AB′C,B′CADE,∠B′AE45°,則點(diǎn)ABC的距離為( 。

A.2B.3C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某果農(nóng)在其承包的果園中種植了60棵桔子樹(shù),每棵桔子樹(shù)的產(chǎn)量是100kg,果農(nóng)想增加桔子樹(shù)的棵數(shù)來(lái)增產(chǎn),但增加果樹(shù)會(huì)導(dǎo)致每棵樹(shù)的光照減少,使得單棵果樹(shù)產(chǎn)量減少,試驗(yàn)發(fā)現(xiàn)每增加1棵桔子樹(shù),單棵桔子樹(shù)的產(chǎn)量減少0.5kg.

(1)在投入成本最低的情況下,增加多少棵桔子樹(shù)時(shí),可以使果園總產(chǎn)量達(dá)到6650kg?

(2)設(shè)增加x棵桔子樹(shù),考慮實(shí)際增加桔子樹(shù)的情況,10≤x≤40,請(qǐng)你計(jì)算一下,果園總產(chǎn)量最多為多少kg,最少為多少kg?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,直徑ADBC于點(diǎn)E,延長(zhǎng)AD至點(diǎn)F,使DF2OD,連接FC并延長(zhǎng)交過(guò)點(diǎn)A的切線(xiàn)于點(diǎn)G,且滿(mǎn)足AGBC,連接OC,若cosBAC,BC6

1)求證:∠COD=∠BAC;

2)求⊙O的半徑OC;

3)求證:CF是⊙O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax2+bx+ca≠0)與y軸交于點(diǎn)C0,4),與x軸交于A(﹣2,0),點(diǎn)B4,0).

1)求拋物線(xiàn)的解析式;

2)若點(diǎn)M是拋物線(xiàn)上的一動(dòng)點(diǎn),且在直線(xiàn)BC的上方,當(dāng)SMBC取得最大值時(shí),求點(diǎn)M的坐標(biāo);

3)在直線(xiàn)的上方,拋物線(xiàn)是否存在點(diǎn)M,使四邊形ABMC的面積為15?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是△ABC內(nèi)一點(diǎn),BDCD,E、F、G、H分別是邊ABBD、CDAC的中點(diǎn).若AD10,BD8CD6,則四邊形EFGH的周長(zhǎng)是( 。

A.24B.20C.12D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,動(dòng)點(diǎn)點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿著方向向點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿著方向向點(diǎn)運(yùn)動(dòng),如果兩點(diǎn)同時(shí)出發(fā),當(dāng)到達(dá)點(diǎn)處時(shí),兩點(diǎn)都停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為秒,的面積為.

1)用含的代數(shù)式表示:

, , ;

2)求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在硬地上拋擲一枚圖釘,通常會(huì)出現(xiàn)兩種情況:

下面是小明和同學(xué)做拋擲圖釘實(shí)驗(yàn)獲得的數(shù)據(jù):

拋擲次數(shù)n

100

200

300

400

500

600

700

800

900

1000

針尖不著地的頻數(shù)m

63

120

186

252

310

360

434

488

549

610

針尖不著地的頻率

0.63

0.60

0.63

0.60

0.62

0.61

0.61

1)填寫(xiě)表中的空格;

2)畫(huà)出該實(shí)驗(yàn)中,拋擲圖釘釘尖不著地頻率的折線(xiàn)統(tǒng)計(jì)圖;

3)根據(jù)拋擲圖釘實(shí)驗(yàn)的結(jié)果,估計(jì)釘尖著地的概率為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ACB=90°,AB=25BC=15.

1)如圖1,折疊ABC使點(diǎn)A落在AC邊上的點(diǎn)D處,折痕交AC、AB分別于QH,若,則HQ= .

2)如圖2,折疊ABC使點(diǎn)A落在BC邊上的點(diǎn)M處,折痕交ACAB分別于E、F.FMA,求證:四邊形AEMF是菱形;

3)在(1)(2)的條件下,線(xiàn)段CQ上是否存在點(diǎn)P,使得CMPHQP相似?若存在,求出PQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案