如圖11,已知○為坐標原點,∠AOB=30°,∠ABO=90°,且點A的坐標為(2,0).
1.求點B的坐標
2.若二次函數(shù)y=ax+bx+c的圖象經(jīng)過A、B、O三點,求此二次函數(shù)的解析式;
3.在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標;若不存在,請說明理由。
1.()
2.y=x2+x.
3.(),
解析:(1) 在Rt△OAB中,∵∠AOB=30°,∴ OB=.過點B作BD垂直于x軸,垂足為D,則 OD=,BD=,∴ 點B的坐標為().
(2)將A(2,0)、B ()、O(0,0)三點的坐標代入y=ax2+bx+c,得
解有a=,b=,c=0. ∴所求二次函數(shù)解析式是 y=x2+x.
(3) 設(shè)存在點C(x , x2+x)(其中0<x<),使四邊形ABCO面積最大.
∵△OAB面積為定值,
∴只要△OBC面積最大,四邊形ABCO面積就最大.
過點C作x軸的垂線CE,垂足為E,交OB于點F,則
S△OBC= S△OCF +S△BCF==,
而 |CF|=yC-yF=,
∴ S△OBC= .
∴當x=時,△OBC面積最大,最大面積為.
此時,點C坐標為(),四邊形ABCO的面積為.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆江蘇鹽城亭湖區(qū)九年級下學期第一次調(diào)研考試數(shù)學試卷(帶解析) 題型:解答題
如圖11,已知○為坐標原點,∠AOB=30°,∠ABO=90°,且點A的坐標為(2,0).
【小題1】求點B的坐標
【小題2】若二次函數(shù)y=ax+bx+c的圖象經(jīng)過A、B、O三點,求此二次函數(shù)的解析式;
【小題3】在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年江蘇鹽城亭湖區(qū)九年級下學期第一次調(diào)研考試數(shù)學試卷(解析版) 題型:解答題
如圖11,已知○為坐標原點,∠AOB=30°,∠ABO=90°,且點A的坐標為(2,0).
1.求點B的坐標
2.若二次函數(shù)y=ax+bx+c的圖象經(jīng)過A、B、O三點,求此二次函數(shù)的解析式;
3.在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com