【題目】如圖,已知和是兩個邊長都為的等邊三角形,且點,,,在同一直線上,連接,.
求證:四邊形是平行四邊形;
若沿著的方向勻速運動,不動,當運動到點與點重合時,四邊形是什么特殊的四邊形?說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】已知在△ABC中,AC=BC,分別過A,B兩點作互相平行的直線AM,BN,過點C的直線分別交直線AM,BN于點D,E.
(1)如圖1,若AM⊥AB,求證:CD=CE;
(2)如圖2,∠ABC=∠DEB=60°,判斷線段AD,DC與BE之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果M個不同的正整數(shù),對其中的任意兩個數(shù),這兩個數(shù)的積能被這兩個數(shù)的和整除,則稱這組數(shù)為M個數(shù)的自然數(shù)組,如(3,6)為兩個數(shù)的自然數(shù)組,因為(3×6)能被(3+6)整除;又如(15,30,60)為三個數(shù)的自然數(shù)組,因為(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…
(1)求證:2n和n(n﹣2)(n≥3,n為整數(shù))組成的數(shù)組是兩個數(shù)的自然數(shù)組;
(2)若(4a,5a,6a)是三個數(shù)的自然數(shù)組,求滿足條件的三位正整數(shù)a,并判斷(4a+5,5a+5,6a+5)是否為自然數(shù)組.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,、為對角線,點、、、分別為、、、邊的中點,下列說法:
①當時,、、、四點共圓.②當時,、、、四點共圓.③當且時,、、、四點共圓.其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點是的中點,點、分別是線段及其延長線上,且,給出下列條件:①;②;③,從中選擇一個條件使四邊形是菱形,并給出證明,你選擇的條件是________(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,C,E,G四點在同一直線上,分別以線段AC,CE,EG為邊在AG同側(cè)作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.
(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說明理由;
(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1個單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標系△ABC是格點三角形(頂點在網(wǎng)格線的交點上)
(1)先作△ABC關(guān)于原點O成中心對稱的△A1B1C1,再把△A1B1C1向上平移4個單位長度得到△A2B2C2;
(2)△A2B2C2與△ABC是否關(guān)于某點成中心對稱?若是,直接寫出對稱中心的坐標;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖(1),若分別以△ABC的三邊AC、BC、AB為邊向三角形外側(cè)作正方形ACDE、BCFG和ABMN,則稱這三個正方形為△ABC的外展三葉正方形,其中任意兩個正方形為△ABC的外展
雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2.
①如圖(2),當∠ACB=90°時,求證:S1=S2;
②如圖(3),當∠ACB≠90°時,S1與S2是否仍然相等,請說明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF、△AEN、△BGM的面積和為S,請利用圖(1)探究:當∠ACB的度數(shù)發(fā)生變化時,S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com