(2013•河西區(qū)二模)有下列結(jié)論:
①對于兩個實數(shù)x和y,若x2+3x-9=0,y2+3y-9=0,則x=y;
②對于兩個實數(shù)x和y,若x+y=1,則x2+y2的最小值為
1
2
;
③對于兩個給定的實數(shù)x和y,若使(x-m)2+(y-m)2達到最小,則m=
x+y
2

其中正確的有( 。﹤.
分析:①由于x2+3x-9=0,y2+3y-9=0,則x、y是一元二次方程z2+3z-9=0的兩個根,計算判別式△的值,即可判斷;
②由x+y=1,用含y的代數(shù)式表示x,再代入x2+y2,然后利用二次函數(shù)的性質(zhì),即可判斷;
③將(x-m)2+(y-m)2變形為2(m-
x+y
2
2+(x2+y2)-
1
2
(x+y)2,然后利用二次函數(shù)的性質(zhì),即可判斷.
解答:解:①∵x2+3x-9=0,y2+3y-9=0,
∴x、y是一元二次方程z2+3z-9=0的兩個根,
∵△=9-4×1×(-9)=45>0,
∴方程z2+3z-9=0有兩個不相等的實數(shù)根,
∴x與y可能不相等;
②∵x+y=1,∴x=1-y,∴x2+y2=(1-y)2+y2=2(y-
1
2
2+
1
2
,
∴當y=
1
2
時,x2+y2有最小值為
1
2

③∵(x-m)2+(y-m)2=2m2-2m(x+y)+x2+y2=2(m-
x+y
2
2+(x2+y2)-
1
2
(x+y)2;
∴當m=
x+y
2
時,(x-m)2+(y-m)2有最小值
1
2
(x+y)2
所以正確的結(jié)論是②③,
故選C.
點評:本題考查了一元二次方程,配方法的應用及二次函數(shù)的性質(zhì),有一定難度,正確配方是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•河西區(qū)二模)2cos45°的值等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河西區(qū)二模)在下列Word文檔的自選圖形中,既是中心對稱圖形,又是軸對稱圖形的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河西區(qū)二模)下列計算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河西區(qū)二模)二次函數(shù)y=x2+2x+3的頂點坐標是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河西區(qū)二模)如圖,在∠ECF的兩邊上有點B,A,D,BC=BD=DA,且∠ADF=75°,則∠ECF的度數(shù)為( 。

查看答案和解析>>

同步練習冊答案