【題目】如圖,在矩形ABCD中,AB4BC,ECD邊上一點(diǎn),將BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tanBAF,則CE_____

【答案】

【解析】

已知tanBAF=,可作輔助線構(gòu)造直角三角形,設(shè)未知數(shù),利用勾股定理可求出FM、BM,進(jìn)而求出FN,再利用三角形相似和折疊的性質(zhì)求出EC

過點(diǎn)FMNAD,交ABCD分別于點(diǎn)M、N,則MNAB,MNCD,

由折疊得:ECEF,BCBF,∠C=∠BFE90°,

tanBAF,設(shè)FMx,則AM2x,BM42x,

RtBFM中,由勾股定理得:

x2+42x2=(2,

解得:x11,x22舍去,

FM1,AMBM2,

FN1,

易證BMF∽△FNE

,即:

解得:EFEC

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),四邊形是正方形,作直線與正方形邊所在直線相交于

1)若直線經(jīng)過點(diǎn),求的值;

2)若直線平分正方形的面積,求的坐標(biāo);

3)若的外心在其內(nèi)部,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,CFAB于點(diǎn)F,過點(diǎn)DDEBC的延長線于點(diǎn)E,且CFDE

1)求證:△BFC≌△CED

2)若∠B60°,AF5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】這是一個(gè)古老的傳說,講一個(gè)犯人利用概率來增加他得到寬恕的機(jī)會.給他兩個(gè)碗,一個(gè)里面裝著5個(gè)黑球,另一個(gè)里面裝著除顏色不同外其它都一樣的5個(gè)白球.把他的眼睛蒙著,然后要選擇一個(gè)碗,并從里面拿出一個(gè)球,如果他拿的是黑球就要繼續(xù)關(guān)在監(jiān)獄里面,如果他拿的是白球,就將獲得自由.在蒙住眼睛之前允許他把球混合,重新分裝在兩個(gè)碗內(nèi)(兩個(gè)碗球數(shù)可以不同).你能設(shè)想一下這個(gè)犯人怎么做,使得自己獲得自由的機(jī)會最大?則犯人獲得自由的最大機(jī)會是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,邊BC長為18,高AD長為12

1)如圖,矩形EFCH的邊GHBC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EFAD于點(diǎn)K,求的值;

2)設(shè)EHx,矩形EFGH的面積為S,求Sx的函數(shù)關(guān)系式,并求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加西部博覽會,資陽市計(jì)劃印制一批宣傳冊.該宣傳冊每本共10頁,由A、B兩種彩頁構(gòu)成.已知A種彩頁制版費(fèi)300/張,B種彩頁制版費(fèi)200/張,共計(jì)2400元.(注:彩頁制版費(fèi)與印數(shù)無關(guān))

1)每本宣傳冊A、B兩種彩頁各有多少張?

2)據(jù)了解,A種彩頁印刷費(fèi)2.5/張,B種彩頁印刷費(fèi)1.5/張,這批宣傳冊的制版費(fèi)與印刷費(fèi)的和不超過30900元.如果按到資陽展臺處的參觀者人手一冊發(fā)放宣傳冊,預(yù)計(jì)最多能發(fā)給多少位參觀者?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD的對角線AC,BD相交于點(diǎn)OAC16,BD12,動點(diǎn)P在線段AC上從點(diǎn)A向點(diǎn)C4個(gè)單位/秒的速度運(yùn)動,過點(diǎn)PEFAC,交菱形ABCD的邊于點(diǎn)EF,在直線AC上有一點(diǎn)G,使AEFGEF關(guān)于EF對稱.設(shè)菱形ABCD被四邊形AEGF蓋住部分的面積為S1,未被蓋住部分的面積為S2,點(diǎn)P運(yùn)動時(shí)間為x秒.

1)用含x的代數(shù)式分別表示S1,S2;

2)若S1S2,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB8,AD17,折疊紙片使點(diǎn)B落在邊AD上的E處,折痕為PQ.當(dāng)EAD邊上移動時(shí),折痕的端點(diǎn)P,Q也隨著移動.若限定P,Q分別在邊BA,BC上移動,則點(diǎn)E在邊AD上移動的最大距離為( 。

A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠ABC=56°,點(diǎn)E,F分別在BD,AD上,當(dāng)AE+EF的值最小時(shí),則∠AEF=___度.

查看答案和解析>>

同步練習(xí)冊答案