【題目】如圖,在矩形ABCD中,AB=4,BC=,E為CD邊上一點(diǎn),將△BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tan∠BAF=,則CE=_____.
【答案】
【解析】
已知tan∠BAF=,可作輔助線構(gòu)造直角三角形,設(shè)未知數(shù),利用勾股定理可求出FM、BM,進(jìn)而求出FN,再利用三角形相似和折疊的性質(zhì)求出EC.
過點(diǎn)F作MN∥AD,交AB、CD分別于點(diǎn)M、N,則MN⊥AB,MN⊥CD,
由折疊得:EC=EF,BC=BF=,∠C=∠BFE=90°,
∵tan∠BAF==,設(shè)FM=x,則AM=2x,BM=4﹣2x,
在Rt△BFM中,由勾股定理得:
x2+(4﹣2x)2=()2,
解得:x1=1,x2=>2舍去,
∴FM=1,AM=BM=2,
∴FN=﹣1,
易證△BMF∽△FNE,
∴,即:,
解得:EF==EC.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),四邊形是正方形,作直線與正方形邊所在直線相交于
(1)若直線經(jīng)過點(diǎn),求的值;
(2)若直線平分正方形的面積,求的坐標(biāo);
(3)若的外心在其內(nèi)部,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,CF⊥AB于點(diǎn)F,過點(diǎn)D作DE⊥BC的延長線于點(diǎn)E,且CF=DE.
(1)求證:△BFC≌△CED;
(2)若∠B=60°,AF=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】這是一個(gè)古老的傳說,講一個(gè)犯人利用概率來增加他得到寬恕的機(jī)會(huì).給他兩個(gè)碗,一個(gè)里面裝著5個(gè)黑球,另一個(gè)里面裝著除顏色不同外其它都一樣的5個(gè)白球.把他的眼睛蒙著,然后要選擇一個(gè)碗,并從里面拿出一個(gè)球,如果他拿的是黑球就要繼續(xù)關(guān)在監(jiān)獄里面,如果他拿的是白球,就將獲得自由.在蒙住眼睛之前允許他把球混合,重新分裝在兩個(gè)碗內(nèi)(兩個(gè)碗球數(shù)可以不同).你能設(shè)想一下這個(gè)犯人怎么做,使得自己獲得自由的機(jī)會(huì)最大?則犯人獲得自由的最大機(jī)會(huì)是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,邊BC長為18,高AD長為12
(1)如圖,矩形EFCH的邊GH在BC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EF交AD于點(diǎn)K,求的值;
(2)設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加西部博覽會(huì),資陽市計(jì)劃印制一批宣傳冊.該宣傳冊每本共10頁,由A、B兩種彩頁構(gòu)成.已知A種彩頁制版費(fèi)300元/張,B種彩頁制版費(fèi)200元/張,共計(jì)2400元.(注:彩頁制版費(fèi)與印數(shù)無關(guān))
(1)每本宣傳冊A、B兩種彩頁各有多少張?
(2)據(jù)了解,A種彩頁印刷費(fèi)2.5元/張,B種彩頁印刷費(fèi)1.5元/張,這批宣傳冊的制版費(fèi)與印刷費(fèi)的和不超過30900元.如果按到資陽展臺(tái)處的參觀者人手一冊發(fā)放宣傳冊,預(yù)計(jì)最多能發(fā)給多少位參觀者?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的對角線AC,BD相交于點(diǎn)O,AC=16,BD=12,動(dòng)點(diǎn)P在線段AC上從點(diǎn)A向點(diǎn)C以4個(gè)單位/秒的速度運(yùn)動(dòng),過點(diǎn)P作EF⊥AC,交菱形ABCD的邊于點(diǎn)E、F,在直線AC上有一點(diǎn)G,使△AEF與△GEF關(guān)于EF對稱.設(shè)菱形ABCD被四邊形AEGF蓋住部分的面積為S1,未被蓋住部分的面積為S2,點(diǎn)P運(yùn)動(dòng)時(shí)間為x秒.
(1)用含x的代數(shù)式分別表示S1,S2;
(2)若S1=S2,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=8,AD=17,折疊紙片使點(diǎn)B落在邊AD上的E處,折痕為PQ.當(dāng)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P,Q也隨著移動(dòng).若限定P,Q分別在邊BA,BC上移動(dòng),則點(diǎn)E在邊AD上移動(dòng)的最大距離為( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=56°,點(diǎn)E,F分別在BD,AD上,當(dāng)AE+EF的值最小時(shí),則∠AEF=___度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com