(2013•湖北)已知α,β是一元二次方程x2-5x-2=0的兩個(gè)實(shí)數(shù)根,則α2+αβ+β2的值為( 。
分析:根據(jù)根與系數(shù)的關(guān)系α+β=-
b
a
,αβ=
c
a
,求出α+β和αβ的值,再把要求的式子進(jìn)行整理,即可得出答案.
解答:解:∵α,β是方程x2-5x-2=0的兩個(gè)實(shí)數(shù)根,
∴α+β=5,αβ=-2,
又∵α2+αβ+β2=(α+β)2-βα,
∴α2+αβ+β2=52+2=27;
故選D.
點(diǎn)評(píng):此題考查了根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法,若方程兩個(gè)為x1,x2,則x1+x2=-
b
a
,x1x2=
c
a
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,已知直線AB∥CD,∠GEB的平分線EF交CD于點(diǎn)F,∠1=40°,則∠2等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱(chēng)為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱(chēng)為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱(chēng)原矩形為n階奇異矩形.如圖1,矩形ABCD中,若AB=2,BC=6,則稱(chēng)矩形ABCD為2階奇異矩形.

(1)判斷與操作:
如圖2,矩形ABCD長(zhǎng)為5,寬為2,它是奇異矩形嗎?如果是,請(qǐng)寫(xiě)出它是幾階奇異矩形,并在圖中畫(huà)出裁剪線;如果不是,請(qǐng)說(shuō)明理由.
(2)探究與計(jì)算:
已知矩形ABCD的一邊長(zhǎng)為20,另一邊長(zhǎng)為a(a<20),且它是3階奇異矩形,請(qǐng)畫(huà)出矩形ABCD及裁剪線的示意圖,并在圖的下方寫(xiě)出a的值.
(3)歸納與拓展:
已知矩形ABCD兩鄰邊的長(zhǎng)分別為b,c(b<c),且它是4階奇異矩形,求b:c(直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,已知拋物線y=ax2+bx-4經(jīng)過(guò)A(-8,0),B(2,0)兩點(diǎn),直線x=-4交x軸于點(diǎn)C,交拋物線于點(diǎn)D.
(1)求該拋物線的解析式;
(2)點(diǎn)P在拋物線上,點(diǎn)E在直線x=-4上,若以A,O,E,P為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)若B,D,C三點(diǎn)到同一條直線的距離分別是d1,d2,d3,問(wèn)是否存在直線l,使d1=d2=
d32
?若存在,請(qǐng)直接寫(xiě)出d3的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北模擬)如圖,已知雙曲線y=
kx
,經(jīng)過(guò)點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限上的動(dòng)點(diǎn),過(guò)C作CA⊥x軸,過(guò)D作DB⊥y軸,垂足分別為A,B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案