【題目】為了解“足球進(jìn)校園”活動(dòng)開(kāi)展情況,某中學(xué)利用體育課進(jìn)行了定點(diǎn)射門(mén)測(cè)試,每人射門(mén)5次,所有班級(jí)測(cè)試結(jié)束后,隨機(jī)抽取了某班學(xué)生的射門(mén)情況作為樣本,對(duì)進(jìn)球的人數(shù)進(jìn)行整理后,繪制了不完整的統(tǒng)計(jì)圖表,該班女生有22人,女生進(jìn)球個(gè)數(shù)的眾數(shù)為2,中位數(shù)為3.
女生進(jìn)球個(gè)數(shù)的統(tǒng)計(jì)表
進(jìn)球數(shù)(個(gè)) | 人數(shù) |
0 | 1 |
1 | 2 |
2 | x |
3 | y |
4 | 4 |
5 | 2 |
(1)求這個(gè)班級(jí)的男生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出扇形統(tǒng)計(jì)圖中進(jìn)2個(gè)球的扇形的圓心角度數(shù);
(3)該校共有學(xué)生1880人,請(qǐng)你估計(jì)全校進(jìn)球數(shù)不低于3個(gè)的學(xué)生大約有人.
【答案】
(1)
解:這個(gè)班級(jí)的男生人數(shù)為6÷24%=25(人),
則這個(gè)班級(jí)的男生人數(shù)為25人;
(2)
解:男生進(jìn)球數(shù)為4個(gè)的人數(shù)為25﹣(1+2+5+6+4)=7(人),進(jìn)2個(gè)球的扇形圓心角度數(shù)為360°× =72°;
補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示:
(3)1160
【解析】(3)根據(jù)題意得:47個(gè)學(xué)生中女生進(jìn)球個(gè)數(shù)為6+4+2=12;男生進(jìn)球數(shù)為6+7+4=17,
∴1880× =1160(人),
則全校進(jìn)球數(shù)不低于3個(gè)的學(xué)生大約有1160人.
故答案為:1160
(1)根據(jù)進(jìn)球數(shù)為3個(gè)的人數(shù)除以占的百分比求出男生總?cè)藬?shù)即可;(2)求出進(jìn)球數(shù)為4個(gè)的人數(shù),以及進(jìn)球數(shù)為2個(gè)的圓心角度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;(3)求出進(jìn)球數(shù)不低于3個(gè)的百分比,乘以1880即可得到結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮用如圖所示的兩個(gè)轉(zhuǎn)盤(pán)(每個(gè)轉(zhuǎn)盤(pán)被分成三個(gè)面積相等的扇形)做游戲,轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)各一次,若兩次數(shù)字之和為奇數(shù),則小明勝;若兩次數(shù)字之和為偶數(shù),則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F是平行四邊形ABCD的邊AB、CD上的點(diǎn),AF與DE相交于點(diǎn)P,BF與CE相交于點(diǎn)Q.若S△APD=15cm2 , S△BOC=25cm2 , 則陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過(guò)原點(diǎn)O,直線y=﹣ x﹣6與x軸、y軸分別相交于A,B兩點(diǎn).
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)若有一拋物線的對(duì)稱(chēng)軸平行于y軸且經(jīng)過(guò)點(diǎn)M,頂點(diǎn)C在圓M上,開(kāi)口向下,且經(jīng)過(guò)點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得
S△PDE= S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)為(﹣2,0),直線y=﹣ x+3與x軸、y軸分別交于點(diǎn)B和點(diǎn)C,連接AC,頂點(diǎn)為D的拋物線y=ax2+bx+c過(guò)A、B、C三點(diǎn).
(1)請(qǐng)直接寫(xiě)出B、C兩點(diǎn)的坐標(biāo),拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)設(shè)拋物線的對(duì)稱(chēng)軸DE交線段BC于點(diǎn)E,P是第一象限內(nèi)拋物線上一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交線段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥AB,交AC于點(diǎn)N,點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿線段BA向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)t(秒)為何值時(shí),存在△QMN為等腰直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y= x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣4,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱(chēng)軸與x軸交于點(diǎn)H,過(guò)點(diǎn)H的直線m交拋物線于P、Q兩點(diǎn),其中點(diǎn)P位于第二象限,點(diǎn)Q在y軸的右側(cè).
(1)求D點(diǎn)坐標(biāo);
(2)若∠PBA= ∠OBC,求點(diǎn)P的坐標(biāo);
(3)設(shè)PQ的中點(diǎn)為M,點(diǎn)N在拋物線上,則以DP為對(duì)角線的四邊形DMPN能否為菱形?若能,求出點(diǎn)N的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1)計(jì)算:(﹣ )﹣1+( )0﹣4cos30°﹣| ﹣2|;
(2)先化簡(jiǎn),后求值:( ﹣x+1)÷ ,其中x= ﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC,D為BC的中點(diǎn),以D為頂點(diǎn)作∠MDN=∠B.
(1)如圖(1)當(dāng)射線DN經(jīng)過(guò)點(diǎn)A時(shí),DM交AC邊于點(diǎn)E,不添加輔助線,寫(xiě)出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點(diǎn)D沿逆時(shí)針?lè)较蛐D(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(diǎn)(點(diǎn)E與點(diǎn)A不重合),不添加輔助線,寫(xiě)出圖中所有的相似三角形,并證明你的結(jié)論.
(3)在圖(2)中,若AB=AC=10,BC=12,當(dāng)S△DEF= S△ABC時(shí),求線段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲五類(lèi)電視節(jié)目最喜愛(ài)的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上的信息,回答下列問(wèn)題:
(1)本次共調(diào)查了名學(xué)生,其中最喜愛(ài)戲曲的有人;在扇形統(tǒng)計(jì)圖中,最喜愛(ài)體育的對(duì)應(yīng)扇形的圓心角大小是 .
(2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛(ài)新聞的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com