【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
【答案】D(2,0)
【解析】(1)找到AB,BC的垂直平分線的交點即為圓心坐標;
(2)利用勾股定理可求得圓的半徑;易得△AOD≌△DEC,那么∠OAD=∠CDE,即可得到圓心角的度數(shù)為90°;
(3)求得弧長,除以2π即為圓錐的底面半徑.
解:(1)如圖;D(2,0)
(2)如圖;AD===2;
作CE⊥x軸,垂足為E.
∵△AOD≌△DEC,
∴∠OAD=∠CDE,
又∵∠OAD+∠ADO=90°,
∴∠CDE+∠ADO=90°,
∴扇形DAC的圓心角為90度;
(3)∵弧AC的長度即為圓錐底面圓的周長.l弧===π,
設(shè)圓錐底面圓半徑為r,則2πr=π,
∴r=.
“點睛”本題用到的知識點為:非直徑的弦的垂直平分線經(jīng)過圓心;圓錐的弧長等于底面周長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D是線段AC上的一動點,E在BC的延長線上,且BD=DE.
(1)如圖1,若點D為線段AC的中點,求證:AD=CE;
(2)如圖2,若點D為線段AC上任意一點,試確定線段AD與CE的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=60°,D、E分別為AB、BC上的點,且AE、CD交于點F.若AE、CD為△ABC的角平分線.
(1)求證:∠AFC=120°;
(2)若AD=6,CE=4,求AC的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩數(shù)學(xué)興趣小組測量山CD 的高度. 甲小組在地面A處測量,乙小組在上坡B處測量,AB=200 m. 甲小組測得山頂D的仰角為45°,山坡B處的仰角為30°;乙小組測得山頂D 的仰角為58°. 求山CD的高度(結(jié)果保留一位小數(shù)).參考數(shù)據(jù):,,供選用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進一批進價為20元/件的日用商品,第一個月,按進價提高50%的價格出售,售出400件,第二個月,商店準備在不低于原售價的基礎(chǔ)上進行加價銷售,根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少.銷售量y(件)與銷售單價x(元)的關(guān)系如圖所示.
(1)圖中點P所表示的實際意義是 ;銷售單價每提高1元時,銷售量相應(yīng)減少 件;
(2)請直接寫出y與x之間的函數(shù)表達式: ;自變量x的取值范圍為 ;
(3)第二個月的銷售單價定為多少元時,可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3,… 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標是________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+6和反比例函數(shù)y=(k≠0).
(1)k滿足什么條件時,這兩個函數(shù)在同一坐標系中的圖象有兩個公共點?
(2)設(shè)(1)中的公共點為A和B,則∠AOB是銳角還是鈍角?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點,DE⊥AB, DF⊥AC,垂足分別是E,F(xiàn).
(1)證明:DE=DF;
(2)只添加一個條件,使四邊形EDFA是正方形.并證明結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com