已知a-b=-,ab=,則代數(shù)式+a2+b2+ab的值等于   
【答案】分析:所求代數(shù)式可化為(a-b)2+3ab的形式,然后代入計算即可.
解答:解:當a-b=-,ab=時,
+a2+b2+ab,
=+(a-b)2+3ab,
=|a-b|+(-2+3×,
=+2+1,
=+3.
故答案為:+3.
點評:此題主要考查二次根式的性質和化簡,靈活掌握完全平方公式是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB⊥BD,CD⊥BD,AD=BC.求證:
(1)AB=DC.
(2)AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AE=AC,AD=AB,∠EAD=∠CAB,求證:∠B=∠D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)如圖1.若∠AOC=30°.求∠DOE的度數(shù);
(2)在圖1中,若∠AOC=a,直接寫出∠DOE的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的∠DOC繞頂點O順時針旋轉至圖2的位置,探究∠AOC和∠DOE的度數(shù)之間的關系.寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2;         
(2)a2+b2;               
(3)a-b.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點O是直線AB上的一點,∠BOC=40°,OD、OE分別是∠BOC、∠AOC的角平分線.
(1)求∠AOE的度數(shù);
(2)寫出圖中與∠EOC互余的角;
(3)∠COE有補角嗎?若有,請把它找出來,并說明理由.

查看答案和解析>>

同步練習冊答案