精英家教網(wǎng)已知:等腰梯形ABCD中,AD∥BC,AD=2,BC=6,將線段DC繞點D逆時針旋轉90°,得到線段DC′.
(1)求△ADC′的面積;
(2)若tan∠DAC′=
25
,求AB的長.
分析:(1)證得△CFD≌△C′ED后得到EC′=FC=2,然后計算三角形的面積即可;
(2)根據(jù)上題證得的全等三角形和tan∠DAC′=
2
5
求得BD的長,再利用勾股定理求得CD的長即可.
解答:精英家教網(wǎng)解:(1)作出線段DC′,(1分)
過點D作DF⊥BC于F,過點A作AH⊥BC于H,
∵四邊形ABCD是等腰梯形,AD∥BC,
易證FC=BH=
1
2
(6-2)=2

∠EDF=∠ADF=90°,
過點C′作C′E垂直于AD的延長線于點E,
∴∠DEC′=∠DFC=90°,
∵線段DC繞點D逆時針旋轉90°,得到線段DC′,
∴∠CDC′=90°,DC=DC′,
∴∠1+∠3=90°,∠2+∠3=90°,
∴∠1=∠2,
∴△CFD≌△C′ED,(2分)
∴EC'=FC=2,
S△ADC=
1
2
AD•CE=
1
2
×2×2=2
;(3分)

(2)在Rt△AEC′中,tan∠DAC′=
2
5
,EC′=2,
∴EA=5,
∵AD=2,
∴ED=3,(4分)
由△CFD≌△C′ED得:DF=ED=3,
在Rt△DFC中,由勾股定理得:CD=
13
,
AB=CD=
13
.(5分)
點評:本題考查了等腰梯形的性質、全等三角形的判定及性質、勾股定理等知識,是一道不錯的幾何綜合題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
如圖(1),在四邊形ABCD中,對角線AC⊥BD,垂足為點P.求證:S四邊形ABCD=
1
2
AC•BD;
證明:∵AC⊥BD,
S△ACD=
1
2
AC•PD
S△ABC=
1
2
AC•BP

∴S四邊形ABCD=S△ACD+S△ACB=
1
2
AC•PD+
1
2
AC•BP
=
1
2
AC(PD+PB)=
1
2
AC•BD
解答問題:
(1)上述證明得到的性質可敘述為
 

(2)已知:如圖(2),在等腰梯形ABCD中,AD∥BC,對角線AC⊥BD,且相交于點P,AD=3cm,BC=7cm,利用上述性質求梯形的面積.
(3)如圖(3),用一塊面積為800cm2的等腰梯形彩紙做風箏,并用兩根竹條作梯形的對角線固定風箏,對角線恰好互相垂直,問竹條的長是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,AB=AC,∠ABC=36°,將△ABC繞著點B逆時針旋轉36°后得到精英家教網(wǎng)△EBF,點A落在點E處,點C落在點F處,連接CF.請你畫出圖形,并按下面要求完成本題.
(1)求證四邊形BCFE是等腰梯形;
(2)求證:AF=
5
-1
2
AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,已知在等腰梯形ABCD中,AD∥BC,∠ABC=45°,兩腰的和為8cm,點E,F(xiàn)分別是對角線AC,BD的中點,點G是底邊BC的中點,則EF的長為


  1. A.
    4數(shù)學公式cm
  2. B.
    2數(shù)學公式cm
  3. C.
    數(shù)學公式cm
  4. D.
    無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:北京同步題 題型:解答題

已知,等腰梯形ABCD中,AD∥BC,∠ABC=60°,AC⊥BD,AB=4cm ,求梯形ABCD的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,等腰梯形ABCD中,AB∥DC,AC⊥BC,  點E是AB的中點,EC∥AD,則∠ABC等于(    )

A.750        B.700      C.600      D.300

查看答案和解析>>

同步練習冊答案