(2008•武漢模擬)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)若⊙O的半徑為3,ED=4,EO的延長(zhǎng)線交⊙O于F,連DF、AF,求△ADF的面積.
分析:(1)連接OD,CD,求出∠BDC=90°,根據(jù)OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據(jù)SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過(guò)O作OM⊥AB于M,過(guò)F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據(jù)sin∠BAC=
BC
AB
=
OM
OA
=
8
10
,求出OM,根據(jù)cos∠BAC=
AC
AB
=
AM
OA
=
3
5
,求出AM,根據(jù)垂徑定理求出AD,代入三角形的面積公式求出即可.
解答:(1)證明:連接OD,CD,
∵AC是⊙O的直徑,
∴∠CDA=90°=∠BDC,
∵OE∥AB,CO=AO,
∴BE=CE,
∴DE=CE,
∵在△ECO和△EDO中
DE=CE
EO=EO
OC=OD
,
∴△ECO≌△EDO,
∴∠EDO=∠ACB=90°,
即OD⊥DE,OD過(guò)圓心O,
∴ED為⊙O的切線.

(2)解:過(guò)O作OM⊥AB于M,過(guò)F作FN⊥AB于N,
則OM∥FN,∠OMN=90°,
∵OE∥AB,
∴四邊形OMFN是矩形,
∴FN=OM,
∵DE=4,OC=3,由勾股定理得:OE=5,
∴AC=2OC=6,
∵OE∥AB,
∴△OEC∽△ABC,
OC
AC
=
OE
AB
,
3
6
=
5
AB
,
∴AB=10,
在Rt△BCA中,由勾股定理得:BC=
102-62
=8,

sin∠BAC=
BC
AB
=
OM
OA
=
8
10
,
OM
3
=
4
5
,
OM=
12
5
=FN,
∵cos∠BAC=
AC
AB
=
AM
OA
=
3
5
,
∴AM=
9
5

由垂徑定理得:AD=2AM=
18
5
,
即△ADF的面積是
1
2
AD×FN=
1
2
×
18
5
×
12
5
=
108
25

答:△ADF的面積是
108
25
點(diǎn)評(píng):本題考查了切線的性質(zhì)和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的運(yùn)用,通過(guò)做此題培養(yǎng)了學(xué)生的分析問(wèn)題和解決問(wèn)題的能力,本題綜合性比較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)冬季的某一天早8:00,室內(nèi)溫度是8℃,室外溫度是-2℃,則室內(nèi)溫度比室外溫度高( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)Rt△ABC中,∠C=90°,斜邊AB上的高為4.8cm,以點(diǎn)C為圓心,5cm為半徑的圓與直線AB的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在高為2m,坡角為30°的樓梯上鋪地毯,地毯的長(zhǎng)度至少應(yīng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)為迎接奧運(yùn)圣火在武漢傳遞,某校在漢口江灘廣場(chǎng)舉行了“我愛(ài)奧運(yùn),祝福圣火”的萬(wàn)人簽名活動(dòng).學(xué)校在廣場(chǎng)上擺放了一些長(zhǎng)桌用于簽名,每張長(zhǎng)桌單獨(dú)擺放時(shí),可容納6人同時(shí)簽名(如圖1,每個(gè)小圓弧代表1個(gè)簽名位置),按圖2的方式擺放兩張長(zhǎng)桌時(shí)可容納10人同時(shí)簽名,若按這種方式擺放10張長(zhǎng)桌(如圖3),這10張桌子可同時(shí)容納的簽名人數(shù)是
42
42

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,直線y=kx+b經(jīng)過(guò)A(-1,1)和B(-
7
,0)兩點(diǎn),則不等式-x>kx+b>0的解集為
-
7
<x<-1
-
7
<x<-1

查看答案和解析>>

同步練習(xí)冊(cè)答案