已知二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(,1),有下列結(jié)論:①ac<0;②a+b=0;③4ac-b2>4a;④a+b+c<0.其中正確的結(jié)論有(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
B
由圖知,拋物線開口向下a<0,拋物線與y軸交于y軸的正半軸,所以c>0,即①ac<0正確。。因?yàn)閷ΨQ軸是x=1/2,即-b/2a=1/2,即a+b=0.即②正確。  因?yàn)轫旤c(diǎn)的縱坐標(biāo)為1,即(4ac-b²)/4a=1,即4ac-b²=4a即③錯(cuò)誤。  又因?yàn)閍+b=0,c>0,所以a+b+c>0,所以④錯(cuò)誤
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AB交x軸于點(diǎn)B(4,0),交y軸于點(diǎn)A(0,4),直線DM⊥x軸正半軸于點(diǎn)M,交線段AB于點(diǎn)C,DM=6,連接DA,∠DAC=90°.

(1)直接寫出直線AB的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是線段MB上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交AB于點(diǎn)F,交過O、D、B三點(diǎn)的拋物線于點(diǎn)E,連接CE.是否存在點(diǎn)P,使△BPF與△FCE相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

巴南區(qū)為了貫徹落實(shí)“森林重慶”,深入開展“綠化長江—重慶行動(dòng)”。現(xiàn)決定對本區(qū)培育種植樹苗的農(nóng)民實(shí)施政府補(bǔ)貼,規(guī)定每種植一畝樹苗一次性補(bǔ)貼農(nóng)民若干元,隨著補(bǔ)貼數(shù)額的不斷增大,生產(chǎn)規(guī)模也不斷增加,但每畝樹苗的收益會(huì)相應(yīng)降低。經(jīng)調(diào)查,種植畝數(shù)y(畝)、每畝樹苗的收益z(元)與補(bǔ)貼樹額x(元)之間的一次函數(shù)關(guān)系如下表:

(1)分別求出政府補(bǔ)貼政策實(shí)施后種植畝數(shù)y、每畝樹苗的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(2)要使我區(qū)種植樹苗的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值和此時(shí)種植的畝數(shù);(總收益=種植畝數(shù)每畝樹苗的收益)
(3)在取得最大收益的情況下,經(jīng)市場調(diào)查,培育種植水果類樹苗經(jīng)濟(jì)效益更好,今年該地區(qū)決定用種植樹苗總面積m﹪的土地種植水果類樹苗,因環(huán)境和經(jīng)濟(jì)等因素的制約,種植水果類樹苗的面積不超過300畝 .經(jīng)測算,種植水果類樹苗需用的支架、塑料膜等材料每畝費(fèi)用為2700元,此外還需購置噴灌設(shè)備,這項(xiàng)費(fèi)用(元)與種植水果類樹苗面積(畝)的平方成正比例,比例系數(shù)為9.預(yù)計(jì)今年種植水果類樹苗后的這部分土地的收益比沒種植前的收益每畝增加了7500元,這樣,該地區(qū)今年因種植水果類樹苗而增加的收益(扣除材料費(fèi)和設(shè)備費(fèi)后)共570000元.求m的值.
(結(jié)果精確到個(gè)位,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過點(diǎn)O(0,0),A(4,0),B(5,5),點(diǎn)C是y軸負(fù)半軸上一點(diǎn),直線經(jīng)過B,C兩點(diǎn),且.

(1)求拋物線的解析式;
(2)求直線的解析式;
(3)  過O,B兩點(diǎn)作直線,如果P是直線OB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線PQ平行于y軸,交拋物線于點(diǎn)Q。問:是否存在點(diǎn)P,使得以P,Q,B為頂點(diǎn)的三角形與△OBC相似?如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)經(jīng)過點(diǎn)O、A、B三點(diǎn),且A點(diǎn)坐標(biāo)為(4,0),B的坐標(biāo)為(m,),點(diǎn)C是拋物線在第三象限的一點(diǎn),且橫坐標(biāo)為-2.

(1)求拋物線的解析式和直線BC的解析式。
(2)直線BC與 x軸相交于點(diǎn)D,求△OBC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a>0)的頂點(diǎn)是C(0,1),直線l:y=-ax+3與這條拋物線交于P、Q兩點(diǎn),與x軸、y軸分別交于點(diǎn)M和N。
(1)設(shè)點(diǎn)P到x軸的距離為2,試求直線l的函數(shù)關(guān)系式;
(2)若線段MP與PN的長度之比為3:1,試求拋物線的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

根據(jù)下列表格中的對應(yīng)值得到二次函數(shù)(a≠0)于x軸有一個(gè)交點(diǎn)的橫坐標(biāo)x的范圍是(    )                                   
x
3.23
3.24
3.25
3.26
y
﹣0.06
﹣0.02
0.03
0.09
 
A.x<3.23                  B.3.23<x<3.24
C.3.24<x<3.25            D.3.25<x<3.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是 【   】
A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)(a>0,b>0)的圖象交于點(diǎn)P,點(diǎn)P的縱坐標(biāo)為1,則關(guān)于x的方程的解為           .

查看答案和解析>>

同步練習(xí)冊答案