【題目】如圖,內(nèi)接于,點的延長線上,

1)求證;

2)若,求的長.

【答案】1)見詳解;(2

【解析】

1)連接OA,由圓周角定理得∠AOC=60°,則△OAC為等邊三角形,則OAAD,得到∠D=30°,即可得到結(jié)論成立;

2)由,得到∠BAC=30°,則CD=AC=BC=5,然后得到半徑OA=OC=5,根據(jù)勾股定理,即可求出AD的長度.

解:(1)如圖,連接OA,

,

∴△AOC是等邊三角形,

OA=OC=AC,∠OAC=60°,

,

∴∠OAD=90°,

∴∠D=30°,

;

2)∵,

∴∠BAD+D=90°,

∴∠BAD=60°,

,

∴∠BAC=30°=B,

AC=BC=CD=5,

OA=OC=AC=5

OD=10,

RtOAD中,由勾股定理,得

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點PABC內(nèi)部或邊上的點(頂點除外),在PABPBC,PCA中,若至少有一個三角形與ABC相似,則稱點PABC的自相似點.

例如:圖1,PABC的內(nèi)部,PBC=A,PCB=ABCBCP∽△ABC,故PABC的自相似點.

請你運用所學(xué)知識,結(jié)合上述材料,解決下列問題:

在平面直角坐標系中,M曲線C上的任意一點,點Nx軸正半軸上的任意一點.

(1) 如圖2,點P是OM上一點,ONP=M, 試說明點P是MON的自相似點; M的坐標是,N的坐標是時,求點P 的坐標;

(2) 如圖3,當M的坐標是N的坐標是時,求MON的自相似點的坐標;

(3) 是否存在點M和點N,使MON無自相似點,?若存在,請直接寫出這兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,邊BC長為18,高AD長為12

1)如圖,矩形EFCH的邊GHBC邊上,其余兩個頂點E、F分別在AB、AC邊上,EFAD于點K,求的值;

2)設(shè)EHx,矩形EFGH的面積為S,求Sx的函數(shù)關(guān)系式,并求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在面積為60的平行四邊形ABCD中,過點AAE垂直于直線BC于點E,作AF垂直于直線CD于點F,若AB=10,BC=12,則CE+CF的值為(

A. 22-11B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2﹣8ax+12a(a<0)與x軸交于A、B兩點(點A在點B的左邊),拋物線上另有一點C在第一象限,且使△OCA∽△OBC,

(1)求OC的長及的值;

(2)設(shè)直線BC與y軸交于P點,當點C恰好在OP的垂直平分線上時,求直線BP和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象,若PA軸交于點Q,且,則的值分別是(

A.B.2,1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組為了了解本校學(xué)生參加課外體育鍛煉情況,隨機抽取本校40名學(xué)生進行問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖:

根據(jù)以上信息解答下列問題:

1)課外體育鍛煉情況統(tǒng)計圖中,經(jīng)常參加所對應(yīng)的圓心角的度數(shù)為 ;經(jīng)常參加課外體育鍛煉的學(xué)生最喜歡的一種項目中,喜歡足球的人數(shù)有 人,補全條形統(tǒng)計圖.

2)該校共有1200名學(xué)生,請估計全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)有多少人?

3)若在乒乓球籃球、足球、羽毛球項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中乒乓球、籃球這兩個項目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的內(nèi)心,的延長線和的外接圓圓相交于點,過作直線

1)求證:是圓的切線;

2)若,,求優(yōu)弧的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______

查看答案和解析>>

同步練習(xí)冊答案