梯形問(wèn)題通常是通過(guò)分割和拼接轉(zhuǎn)化為三角形或平行四邊形,其分割拼接的方法有如下幾種( 如圖) :
(1) 平移一腰,即從梯形的一個(gè)頂點(diǎn)______ ,把梯形分成一個(gè)平行四邊形和一個(gè)三角形( 圖1 所示) ;
(2)從同一底的兩端______,把梯形分成一個(gè)矩形和兩個(gè)直角三角形(圖2所示);
(3)平移對(duì)角線(xiàn),即過(guò)底的一端______,可以借助新得的平行四邊形或三角形來(lái)研究梯形(圖3所示);
(4)延長(zhǎng)梯形的兩腰______,得到兩個(gè)三角形,如果梯形是等腰梯形,則得到兩個(gè)等腰三角形(圖4所示);
(5)以梯形一腰的中點(diǎn)為_(kāi)_____,作某圖形的中心對(duì)稱(chēng)圖形(圖5、圖6所示);    
(6)以梯形一腰為_(kāi)_____,作梯形的軸對(duì)稱(chēng)圖形(圖7所示)。
  
(1)作一腰的平行線(xiàn);   (2)作另一底邊的垂線(xiàn);   (3)作對(duì)角線(xiàn)的平行線(xiàn);(4)交于一點(diǎn);   (5)對(duì)稱(chēng)中心;   (6)對(duì)稱(chēng)軸.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:現(xiàn)有5個(gè)邊長(zhǎng)為1的正方形,排列形式如圖1,請(qǐng)把它們分割后拼接成一個(gè)新的正方形.
要求:畫(huà)出分割線(xiàn)并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線(xiàn)畫(huà)出拼接成的新正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長(zhǎng)為x(x>0).依題意,割補(bǔ)前后圖形面積相等,有x2=5,解得x=
5
.由此可知新正方形的邊長(zhǎng)等于兩個(gè)小正方形組成的矩形對(duì)角線(xiàn)的長(zhǎng).于是,畫(huà)出如圖2所示的分割線(xiàn),拼出如圖3所示的新正方形.
精英家教網(wǎng)
請(qǐng)你參考小東同學(xué)的做法,解決如下問(wèn)題:
(1)如圖4,是由邊長(zhǎng)為1的5個(gè)小正方形組成,請(qǐng)你通過(guò)分割,把它拼成一個(gè)正方形(在圖4上畫(huà)出分割線(xiàn),在圖4的右側(cè)畫(huà)出拼成的正方形簡(jiǎn)圖);
(2)如圖5,是由邊長(zhǎng)分別為a和b的兩個(gè)正方形組成,請(qǐng)你通過(guò)分割,把它拼成一個(gè)正方形(在圖5上畫(huà)出分割線(xiàn),在圖5的右側(cè)畫(huà)出拼成的正方形簡(jiǎn)圖).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)活動(dòng)課上,老師要求同學(xué)們先做下面的“循環(huán)分割”操作,然后再探索規(guī)律:
如圖1,是一等腰梯形紙片,其腰長(zhǎng)與上底長(zhǎng)相等,且底角分別60°和120°,按要求開(kāi)始操作(每次分割,紙片均不得留有剩余);
精英家教網(wǎng)
第1次分割:將原等腰梯形紙片分割成3個(gè)等邊三角形;
第2次分割:將上次分割出的一個(gè)等邊三角形分割成3個(gè)全等的等腰梯形,然后將剛分割出的一個(gè)等腰梯形分割成3個(gè)等邊三角形;
以后按第2次分割的方法進(jìn)行下去…請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)你在圖2中畫(huà)出前兩次分割后的圖案;
(2)若原等腰梯形的面積為a,請(qǐng)你通過(guò)操作、觀察,將第2次,第3次分割后所得的一個(gè)最小等邊三角形的面積分別填入下表:
 
分割次數(shù)(n) 1 2 3
一個(gè)最小等邊三角形的面積(S)
1
3
a
   
(3)請(qǐng)你猜想,分割所得的一個(gè)最小等邊三角形面積S與分割次數(shù)n有何關(guān)系?(請(qǐng)直接用含a的式子表示,不需寫(xiě)推理過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)學(xué)活動(dòng)課上,老師要求同學(xué)們先做下面的“循環(huán)分割”操作,然后再探索規(guī)律:
如圖1,是一等腰梯形紙片,其腰長(zhǎng)與上底長(zhǎng)相等,且底角分別60°和120°,按要求開(kāi)始操作(每次分割,紙片均不得留有剩余);

第1次分割:將原等腰梯形紙片分割成3個(gè)等邊三角形;
第2次分割:將上次分割出的一個(gè)等邊三角形分割成3個(gè)全等的等腰梯形,然后將剛分割出的一個(gè)等腰梯形分割成3個(gè)等邊三角形;
以后按第2次分割的方法進(jìn)行下去…請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)你在圖2中畫(huà)出前兩次分割后的圖案;
(2)若原等腰梯形的面積為a,請(qǐng)你通過(guò)操作、觀察,將第2次,第3次分割后所得的一個(gè)最小等邊三角形的面積分別填入下表:
分割次數(shù)(n)123
一個(gè)最小等邊三角形的面積(S)數(shù)學(xué)公式a
(3)請(qǐng)你猜想,分割所得的一個(gè)最小等邊三角形面積S與分割次數(shù)n有何關(guān)系?(請(qǐng)直接用含a的式子表示,不需寫(xiě)推理過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:填空題

一個(gè)復(fù)合圖形的形成,通常是通過(guò)圖形之間的變換關(guān)系如(    )、(    )及(    )而得到的。

查看答案和解析>>

同步練習(xí)冊(cè)答案