BD=CD ∠FDC=∠BAD=∠DAC △ADC∽△DFC
分析:根據(jù)圓周角定理可得∠ADB=90°,即AD⊥BC;
等腰△ABC中,根據(jù)等腰三角形三線合一的性質(zhì),可證得BD=DC,且∠BAD=∠CAD;
由圓內(nèi)接四邊形的性質(zhì)易知:∠DEC=∠B=∠C,因此△DEC也是等腰三角形,同上,也可證得EF=FC,∠FDE=∠CDF;而∠FDC=∠BAC,因此∠FDE=∠FDC=∠BAD=∠CAD;
在Rt△ACD中,DF⊥AC,易證得△CFD∽△CDA;同理可證得△CFD∽△DFA∽△BAD等.
本題可得出的結(jié)論較多,答案不唯一.
解答:∵AB為直徑,∴AD⊥BC;
△ABC中,AB=AC,AD⊥BC;
∴AD是底邊BC的中線,也是頂角∠BAC的角平分線;(等腰三角形三線合一)
∴BD=DC,∠BAD=∠DAC;①
∵AB=AC,
∴∠B=∠C;
∵四邊形ABDE是圓的內(nèi)接四邊形,
∴∠DEC=∠B,∠EDC=∠BAC;
∴∠DEC=∠C;
∴DE=DC;又DF⊥CE,
∴∠EFD=FDC=
∠EDC=
∠BAC=∠BAD=∠CAD;②
∵∠FDC=∠DAC,∠DFC=∠ADC=90°,
∴△DFC∽△ADC;
同理可證得△EFD∽△ADF∽△ACD等.③
點評:本題考查了圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定和性質(zhì)等知識的綜合應(yīng)用.