如圖,矩形ABCD的AB邊長為4,M為BC的中點(diǎn),∠AMD=90°,則矩形ABCD的周長是________.

24
分析:此題的關(guān)鍵是求出AD、BC的長;首先證△ABM≌△DCM,可得出∠AMB=∠DMC,由此可求出兩角的度數(shù),即可得出BM、MC的長,由此得解.
解答:∵四邊形ABCD是矩形,
∴∠B=∠C=90°,AB=CD;
又∵BM=MC,
∴△ABM≌△DCM;
∴∠AMB=∠DMC=45°;
∴AB=BM=4,CM=CD=4;
∴AD=BC=8
故矩形ABCD的周長等于2×(4+8)=24.
故答案為24.
點(diǎn)評:此題主要考查了矩形的性質(zhì)、等腰直角三角形的性質(zhì)以及全等三角形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對角線AC和BD相交于點(diǎn)O,過點(diǎn)O的直線分別交AD和BC于點(diǎn)E、F,AB=2,BC=3,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y=
kx
的圖象上,若點(diǎn)A的坐標(biāo)為(-2,-2),則k的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的一邊AD在x軸上,對角線AC、BD交于點(diǎn)E,過B點(diǎn)的雙曲線y=
kx
(x>0)
恰好經(jīng)過點(diǎn)E,AB=4,AD=2,則K的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•葫蘆島)如圖,矩形ABCD的對角線交于點(diǎn)O,∠BOC=60°,AD=3,動點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DO以每秒1個單位長的速度運(yùn)動到點(diǎn)O停止.設(shè)運(yùn)動時間為x秒,y=S△POC,則y與x的函數(shù)關(guān)系大致為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的對角線交于O點(diǎn),∠AOB=120°,AD=5cm,則AC=
10
10
cm.

查看答案和解析>>

同步練習(xí)冊答案