如圖所示,P是直線PO上一點(diǎn),其坐標(biāo)是(-4,2),則sin∠POE的值是________.


分析:過(guò)P點(diǎn)作PQ⊥y軸于點(diǎn)Q,則OQ=2,PQ=4,在直角△OPQ中,先利用勾股定理求出斜邊OP的長(zhǎng),再根據(jù)正弦函數(shù)的定義求解.
解答:解:如圖,過(guò)P點(diǎn)作PQ⊥y軸于點(diǎn)Q,則OQ=2,PQ=4,
在直角△OPQ中,∠OQP=90°,由勾股定理,得
OP==2,
所以sin∠POE===
故sin∠POE的值是
點(diǎn)評(píng):主要考查了點(diǎn)的坐標(biāo)的意義,勾股定理以及銳角三角函數(shù)的定義,屬于基礎(chǔ)題,通過(guò)作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,O是直線AB上一點(diǎn),∠AOC=
13
∠BOC,OC是∠AOD的平分線.
(1)求∠COD的度數(shù).
(2)判斷OD與AB的位置關(guān)系,并說(shuō)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣安)已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱軸是直線x=1.下列結(jié)論:
①abc>O,②2a+b=O,③b2-4ac<O,④4a+2b+c>O
其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的位置如圖所示,對(duì)稱軸是直線x=
1
3
.則下列結(jié)論中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,O是直線AC上一點(diǎn),OB是一條射線,OD平分∠AOB,OE在∠BOC內(nèi),∠BOE=
13
∠EOC,∠DOE=60°.
(Ⅰ)求∠EOC的度數(shù);
(Ⅱ)在上圖中,哪些角互為余角?為什么?互為補(bǔ)角的角有幾對(duì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,0是直線AB上一點(diǎn),0C是∠AOB的平分線.
(1)圖中互余的角是
∠AOD與∠DOC
∠AOD與∠DOC

(2)圖中互補(bǔ)的角是
∠AOD與∠BOD、∠AOC與∠BOC
∠AOD與∠BOD、∠AOC與∠BOC

查看答案和解析>>

同步練習(xí)冊(cè)答案